B. Dutta, R. Schwarz, S. Omar, S. Natour, R. Abu-Reziq
FULL PAPER
[9] a) M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Na-
ture 2014, 510, 485–496; b) O. Kühl, Functionalised N-Hetero-
cyclic Carbene Complexes, John Wiley & Sons, Chichester, UK,
2010; c) W. Kirmse, Angew. Chem. Int. Ed. 2010, 49, 8798–
8801; Angew. Chem. 2010, 122, 8980–8983; d) F. E. Hahn,
M. C. Jahnke, Angew. Chem. Int. Ed. 2008, 47, 3122–3172; An-
gew. Chem. 2008, 120, 3166–3216; e) S. P. Nolan, N-Heterocy-
clic Carbenes in Synthesis Wiley-VCH, Weinheim, Germany,
2006; f) W. A. Herrmann, C. Köcher, Angew. Chem. Int. Ed.
Engl. 1997, 36, 2162–2187; Angew. Chem. 1997, 109, 2256–
2282.
[10] a) S. Gaillard, J.-L. Renaud, Dalton Trans. 2013, 42, 7255–
7270; b) D. J. D. Wilson, S. A. Couchman, J. L. Dutton, Inorg.
Chem. 2012, 51, 7657–7668; c) H. Jacobsen, A. Correa, A.
Poater, C. Costabile, L. Cavallo, Coord. Chem. Rev. 2009, 253,
687–703; d) N. S. Antonova, J. J. Carbo, J. M. Poblet, Organo-
metallics 2009, 28, 4283–4287; e) M.-T. Lee, C.-H. Hu, Organo-
metallics 2004, 23, 976–983.
[11] a) C. Valente, S. Calimsiz, K. H. Hoi, D. Mallik, M. Sayah,
M. G. Organ, Angew. Chem. Int. Ed. 2012, 51, 3314–3332; An-
gew. Chem. 2012, 124, 3370–3388; b) G. C. Fortman, S. P. No-
lan, Chem. Soc. Rev. 2011, 40, 5151–5169; c) G. C. Vougiouka-
lakis, R. H. Grubbs, Chem. Rev. 2010, 110, 1746–1787; d) C.
Samojlowicz, M. Bieniek, K. Grela, Chem. Rev. 2009, 109,
3708–3742; e) R. Corberán, E. Mas-Marzá, E. Peris, Eur. J.
Inorg. Chem. 2009, 1700–1716; f) S. Wuertz, F. Glorius, Acc.
Chem. Res. 2008, 41, 1523–1533; g) A. S. Veige, Polyhedron
2008, 27, 3177–3189; h) A. T. Normand, K. J. Cavell, Eur. J.
Inorg. Chem. 2008, 2781–2800; i) T. Strassner, Top. Organomet.
Chem. 2007, 22, 125–148; j) E. A. B. Kantchev, C. J. O’Brien,
M. G. Organ, Angew. Chem. Int. Ed. 2007, 46, 2768–2813; An-
gew. Chem. 2007, 119, 2824–2870; k) E. Despagnet-Ayoub, T.
Ritter, Top. Organomet. Chem. 2007, 21, 193–218; l) M. S.
Viciu, S. P. Nolan, Top. Organomet. Chem. 2005, 14, 241–278;
m) W. A. Herrmann, Angew. Chem. Int. Ed. 2002, 41, 1290–
1309; Angew. Chem. 2002, 114, 1342–1363.
[12] a) M. Ahmed, C. Buch, L. Routaboul, R. Jackstell, H. Klein,
A. Spannenberg, M. Beller, Chem. Eur. J. 2007, 13, 1594–1601;
b) A. M. Seayad, K. Selvakumar, M. Ahmed, M. Beller, Tetra-
hedron Lett. 2003, 44, 1679–1683.
[13] a) A. E. C. Collis, I. T. Horvath, Catal. Sci. Technol. 2011, 1,
912–919; b) M. Benaglia (Ed.), Recoverable and Recyclable Cat-
alysts, John Wiley & Sons, Chichester, UK, 2009; c) A. Corma,
H. Garcia, Top. Catal. 2008, 48, 8–31; d) A. Choplin, F. Quig-
nard, Coord. Chem. Rev. 1998, 178–180, 1679–1702.
[14] a) J. Lu, P. H. Toy, Chem. Rev. 2009, 109, 815–838; b) C. A.
McNamara, M. J. Dixon, M. Bradley, Chem. Rev. 2002, 102,
3275–3299; c) N. E. Leadbeater, M. Marco, Chem. Rev. 2002,
102, 3217–3273.
[15] a) E. Serrano, N. Linares, J. Garcia-Martinez, J. R. Berenguer,
ChemCatChem 2013, 5, 844–860; b) C. E. Song, S.-g. Lee,
Chem. Rev. 2002, 102, 3495–3524.
hydrogen and carbon monoxide. The autoclave was heated at the
desired temperature for 16 h. Then, the autoclave was cooled down
to room temperature, the gases were released carefully, the solvent
was removed, and the crude material was analyzed by GC and
1H NMR spectroscopy. Then, it was purified by column
chromatography on neutral alumina (hexane/ethyl acetate, 10:1).
General Procedure for the Hydroaminomethylation Reaction under
Semi-heterogeneous Conditions: A mixture of the appropriate olefin
(5 mmol) and the corresponding amine (6 mmol) was added to the
magnetite-supported rhodium suspension (5 mL). The mixture was
transferred to a glass-lined autoclave. The autoclave was sealed,
purged with hydrogen (3ϫ), and pressurized to 69 bar with a 1:1
mixture of hydrogen/carbon monoxide. The autoclave was heated
at 80 °C for 16 h. After releasing the gases, the catalyst was sepa-
rated by application of an external magnetic field, and the solvent
was removed. The resulting material was analyzed by GC and
1H NMR spectroscopy. The catalyst was washed with ethyl acetate
(3ϫ 5 mL) and reused in subsequent cycles.
Acknowledgments
The authors acknowledge funding support from Casali Founda-
tion.
[1] S. A. Lawrence, Amines: Synthesis Properties and Applications,
Cambridge University Press, Cambridge, UK, 2004.
[2] a) T. E. Müller, M. Beller, Chem. Rev. 1998, 98, 675–704; b) T.
Rische, K.-S. Müller, P. Eilbracht, Tetrahedron 1999, 55, 9801–
9816; c) C. Cao, J. T. Ciszewski, A. L. Odom, Organometallics
2001, 20, 5011–5013; d) A. Tillack, I. Garcia Castro, C. G.
Hartung, M. Beller, Angew. Chem. Int. Ed. 2002, 41, 2541–
2543; Angew. Chem. 2002, 114, 2646–2648; e) J. Seayad, A. Til-
lack, C. G. Hartung, M. Beller, Adv. Synth. Catal. 2002, 344,
795–813.
[3] W. Reppe, H. Vetter, Justus Liebigs Ann. Chem. 1953, 582, 133–
161.
[4] a) P. Eilbracht, L. Bärfacker, C. Buss, C. Hollmann, B. E.
Kitsos-Rzychon, C. L. Kranemann, T. Rische, R. Roggenbuck,
A. Schmidt, Chem. Rev. 1999, 99, 3329–3366; b) I. D. Kostas,
J. Chem. Res. Synop. 1999, 630–631; c) M. Ahmed, A. M.
Seayad, R. Jackstell, M. Beller, J. Am. Chem. Soc. 2003, 125,
10311–10318.
[5] a) L. F. Tietze, Chem. Rev. 1996, 96, 115–136; b) T. Rische, P.
Eilbracht, Synthesis 1997, 1331–1337.
[6] a) P. Eilbracht, C. L. Kranemann, L. Bärfacker, Eur. J. Org.
Chem. 1999, 1907–1914; b) A. Seayad, M. Ahmed, H. Klein,
R. Jackstell, T. Gross, M. Beller, Science 2002, 297, 1676–1678;
c) F. Koç, M. Wyszogrodzka, P. Eilbracht, R. Haag, J. Org.
Chem. 2005, 70, 2021–2025; d) M. Ahmed, R. P. J. Bronger, R.
Jackstell, P. C. J. Kamer, P. W. N. M. van Leeuwen, M. Beller,
Chem. Eur. J. 2006, 12, 8979–8988; e) G. Liu, K. Huang, B.
Cao, M. Chang, S. Li, S. Yu, L. Zhou, W. Wu, X. Zhang, Org.
Lett. 2011, 13, 102–105; f) G. Liu, K. Huang, C. Cai, B. Cao,
M. Chang, W. Wu, X. Zhang, Chem. Eur. J. 2011, 17, 14559–
14563; g) M. Beigi, S. Ricken, K. S. Müller, F. Koç, P. Eil-
bracht, Eur. J. Org. Chem. 2011, 1482–1492.
[16] a) D. Wang, D. Astruc, Chem. Rev. 2014, 114, 6949–6985; b)
L. M. Rossi, N. J. S. Costa, F. P. Silva, R. Wojcieszak, Green
Chem. 2014, 16, 2906–2933; c) R. B. N. Baig, R. S. Varma,
Chem. Commun. 2013, 49, 752–770; d) S. B. Kalidindi, B. R.
Jagirdar, ChemSusChem 2012, 5, 65–75; e) V. Polshettiwar, R.
Luque, A. Fihri, H. Zhu, M. Bouhrara, J.-M. Basset, Chem.
Rev. 2011, 111, 3036–3075; f) Y. Zhu, L. P. Stubbs, F. Ho, R.
Liu, C. P. Ship, J. A. Maguire, N. S. Hosmane, ChemCatChem
2010, 2, 365–374; g) S. Shylesh, V. Schuenemann, W. R. Thiel,
Angew. Chem. Int. Ed. 2010, 49, 3428–3459; Angew. Chem.
2010, 122, 3504–3537; h) C. W. Lim, I. S. Lee, Nano Today
2010, 5, 412–434.
[7] a) X. Zheng, B. Cao, X. Zhang, Tetrahedron Lett. 2014, 55,
4489–4491; b) G. Liu, Z. Li, H. Geng, X. Zhang, Catal. Sci.
Technol. 2014, 4, 917–921; c) D. Crozet, C. E. Kefalidis, M. [17] a) Y. Xu, Y. Wang, K. Li, M. Niu, Y. Zeng, J. Jiang, Z. Jin, J.
Urrutigoity, L. Maron, P. Kalck, ACS Catal. 2014, 4, 435–447;
d) S. Li, K. Huang, J. Zhang, W. Wu, X. Zhang, Org. Lett.
2013, 15, 3078–3081; e) S. R. Khan, B. M. Bhanage, Appl. Or-
ganomet. Chem. 2013, 27, 711–715.
Nanosci. Nanotechnol. 2013, 13, 5048–5052; b) K. Li, Y. Wang,
Y. Xu, W. Li, M. Niu, J. Jiang, Z. Jin, Catal. Commun. 2013,
34, 73–77; c) S. R. Khan, M. V. Khedkar, Z. S. Qureshi, D. B.
Bagal, B. M. Bhanage, Catal. Commun. 2011, 15, 141–145; d)
A. Behr, M. Becker, S. Reyer, Tetrahedron Lett. 2010, 51, 2438–
2441; e) B. Hamers, P. S. Baeuerlein, C. Mueller, D. Vogt, Adv.
[8] T. Gross, A. M. Seayad, M. Ahmad, M. Beller, Org. Lett. 2002,
4, 2055–2058.
1968
www.eurjoc.org
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2015, 1961–1969