10.1002/anie.201812701
Angewandte Chemie International Edition
COMMUNICATION
conditions. The [18F]fluorinated analogues (1518F-1818F,
respectively) were obtained in 13-37% RCC.19
Keywords: C-H functionalization • PET radiochemistry •
Fluorine-18 • Late-stage Fluorination • C-H Fluorination
A final set of experiments involved automation of this
reaction on a TRACERLab FXFN synthesis module and
hydrolysis of the aminoquinoline protecting group (Scheme 1).
Initial automated studies were conducted with 1H, and afforded
118F in 28 ± 6% (n = 6) automated RCC or, by incorporating
semi-preparative HPLC purification, 9 ± 4% (n = 6) isolated
decay-corrected radiochemical yield (RCY) and >98%
radiochemical purity (RCP). Starting with 1.7 Ci of [18F]fluoride
118F was obtained in 42 ± 3 mCi (n = 3) with high specific
activity (6 ± 1 Ci/µmol). Hydrolysis of the aminoquinoline
protecting group was then achieved with 4 M NaOH to afford
1918F in 90 ± 2% RCC from 118F (n = 3) and 21 ± 2% RCC
based upon starting [18F]fluoride.
An analogous method was applied to the synthesis of
[18F]AC261066 (2018F), a RARb2 agonist (Scheme 1).20
Subjecting 18H to the C–H radiofluorination conditions
afforded 1818F in 12 ± 2% automated RCC (n = 3). Starting
with 1.7 Ci of [18F]fluoride, 1818F was obtained in 36 ± 8 mCi (n
= 3) after sep-pak purification, corresponding to 3 ± 1%
isolated decay-corrected RCY. Manual hydrolysis of the amide
with 4 M NaOH formed [18F]AC261066 (2018F) in 98 ± 1% RCC
from 1818F (n = 5, determined by radio-TLC). Overall, the
isolated decay-corrected RCY of 2018F was 9 ± 7 mCi (2 ± 1%
based upon starting [18F]fluoride, n = 3). The product was
obtained in high chemical and radiochemical (>98%) purity and
high specific activity (0.80 ± 0.25 Ci/µmol).21
In summary, we describe the Cu-catalyzed,
aminoquinoline-directed C(sp2)–H radiofluorination of arene
C(sp2)–H bonds with K18F.22 The method has been applied to
a variety of substrates, including the active pharmaceutical
ingredients of probenecid, ataluren, and tamibarotene. In
addition, it has been translated to an automated synthesis of
high specific activity doses of RARb2 agonist [18F]AC261066.
We note that the automated radiochemical yields and directing
group cleavage procedures will require additional optimization
before they can be applied in routine radiosyntheses. In
addition, future work should target the use of more practical
directing groups as well as non-directed approaches to C–H
radiofluorination. However, overall this operationally simple
procedure demonstrates proof-of-concept that metal-catalyzed
nucleophilic C(sp2)–H radiofluorination is feasible, and that this
approach shows promise for the late-stage radiofluorination of
bioactive molecules.
[1]
a) J. Wang, M. Sánchez-Roselló, J. L. Aceña, C. del Pozo, A. E.
Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, Chem. Rev. 2014,
114, 2432. b) E. P. Gillis, K. J. Eastman, M. D. Hill, D. J. Donnelly, N.
A. Meanwell, J. Med. Chem. 2015, 58, 8315.
[2]
[3]
N. A. Meanwell, J. Med. Chem., 2018, 61, 5822.
S. M. Ametamey, M. Honer, P. A. Schubiger, Chem. Rev., 2008, 108,
1501.
[4]
[5]
a) M. M. Alauddin, Am. J. Nucl. Med. Mol. Imaging, 2012, 2, 55. b) P.
Brust, J. van den Hoff, J. Steinbach, Neurosci. Bull. 2014, 30, 777.
For recent reviews and perspectives on late-stage fluorination, see:
a) A. F. Brooks, J. J. Topczewski, N. Ichiishi, M. S. Sanford, P. J. H.
Scott, Chem. Sci. 2014, 5, 4545. b) M. G. Campbell, T. Ritter, Chem.
Rev. 2015, 115, 612. c) S. Preshlock, M. Tredwell, V. Gouverneur,
Chem. Rev. 2016, 116, 719. d) M. S. Sanford, P. J. H. Scott, ACS
Cent. Sci. 2016, 2, 128. e) M. G. Campbell, J. Mercier, C. Genicot, V.
Gouverneur, J. M. Hooker, T. Ritter, Nat. Chem. 2017, 9, 1.
a) E. Lee, A. S. Kamlet, D. C. Powers, C. N. Neumann, G. B.
Boursalian, T. Furuya, D. C. Choi, J. M. Hooker, T. Ritter, Science
2011, 334, 639. b) E. Lee, J. M. Hooker, T. Ritter, J. Am. Chem. Soc.
2012, 134, 17456. c) N. Ichiishi, A. F. Brooks, J. J. Topczewski, M. E.
Rodnick, M. S. Sanford, P. J. H. Scott, Org. Lett. 2014, 16, 3224. d)
M. Tredwell, S. M. Preshlock, N. J. Taylor, S. Gruber, M. Huiban, J.
Passchier, J. Mercier, C. Génicot, V. Gouverneur, Angew. Chem., Int.
Ed. 2014, 53, 7751. e) A. V. Mossine, A. F. Brooks, K. J. Makaravage,
J. M. Miller, N. Ichiishi, M. S. Sanford, P. J. H. Scott, Org. Lett. 2015,
17, 5780. f) B. D. Zlatopolskiy, J. Zischler, P. Krapf, F. Zarrad, E. A.
Urusova, E. Kordys, H. Endepols, B. Neumaier, Chem. Eur. J. 2015,
21, 5972. g) K. J. Makaravage, A. F. Brooks, A. V. Mossine, M. S.
Sanford, P. J. H. Scott, Org. Lett. 2016, 18, 5440. h) C. N. Neumann,
J. M. Hooker, T. Ritter, Nature, 2016, 534, 369. i) M. H. Beyzavi, D.
Mandal, M. G. Strebl, C. N. Neumann, E. M. D'Amato, J. Chen, J. M.
Hooker, T. Ritter ACS Cent. Sci., 2017, 3, 944. j) A. V. Mossine, A. F.
Brooks, V. Bernard-Gauthier, J. J. Bailey, N. Ichiishi, R. Schirrmacher,
M. S. Sanford, P. J. H. Scott, J. Labelled Compd. Radiopharm., 2018,
61, 228. k) N. J. Taylor, E. Emer, S. Preshlock, M. Schedler, M.
Tredwell, S. Verhoog, J. Mercier, C. Genicot, V. Gouverneur, J. Am.
Chem. Soc., 2018, 139, 8267.
[6]
[7]
[8]
[9]
a) M. B. Nodwell, H. Yang, M. Čolović, Z. Yuanm, H. Merkens, R. E.
Martin, F. Bénard, P. Schaffer, R. Britton, J. Am. Chem. Soc., 2017,
139, 3595. b) R. Britton, Z. Yuan, M. Nodwell, H. Yang, N. Malik, H.
Merkens, F. Bernard, R. Martin, P. Schaffer. Angew. Chem. Int. Ed.,
2018, 57, 12733.
a) X. Huang, W. Liu, H. Ren, R. Neelamegam, J. M. Hooker, J. T.
Groves, J. Am. Chem. Soc., 2014, 136, 6842. b) X. Huang, W. Liu, J.
M. Hooker, J. T. Groves, Angew. Chem. Int. Ed., 2015, 54, 5241. c)
W. Liu, X. Huang, M. S. Placzek, S. W. Krska, P. McQuade, J. M.
Hooker, J. T. Groves, Chem. Sci., 2018, 9, 1168.
O. Jacobson, D. O. Kiesewetter, X. Chen, Bioconjugate Chem., 2015,
26, 1.
[10] J. Bergman, O. Solin, Nucl. Med. Biol., 1997, 24, 677.
[11] M. S. McCammant, S. Thompson, A. F. Brooks, S. W. Krska, P. J. H.
Scott, M. S. Sanford, Org. Lett., 2017, 19, 3939.
Experimental Section
Detailed experimental details are provided in the supporting information.
[12] T. Truong, K. Klimovica, O. Daugulis, J. Am. Chem. Soc. 2013, 135,
9342.
[13] P. J. H. Scott, A. F. Brooks, N. Ichiishi, M. S. Sanford, Preparation of
Ag18F and its use in the Synthesis of PET Radiotracers, U.S. Patent
2016/0317682 A1, Nov 3, 2016.
Acknowledgements
[14] Other bases were also compatible (e.g. comparable RCCs could be
obtained using 1,5-diazabicyclo[4.3.0]non-5-ene; see Supporting
Information).
This work was supported by NIH (R01EB021155) and DOE
(DE-SC0012484).
This article is protected by copyright. All rights reserved.