Silver-Catalyzed Stereoselective [3+2]Cycloadditions of Cyclopropyl-Indanimines
be unstable [see Eq. (4)] because of its steric hin- Typical Procedure for Synthesis of N-{3,3-Dimethyl-1-
drance, and it undergoes a facile hydrolysis to give phenyl-3,3a-dihydro-1H-indeno
ACHTUNGTERNN[UNG 1,2-c]furan-8ACHTUNGERTN(NUGN 8aH)-
the observed indanone 4a’. We speculate that addi- ylidene}-4-methylbenzenesulfonamide (4a)
tional benzaldehyde (5 equiv.) assists the completion
To
a 1,2-dichloroethane (1.6 mL) solution of AgNTf2
of this silver-catalyzed hydrolysis. In the absence of
benzaldehyde, water (2 equiv.) likely attacks the oxo-
nium intermediate I to displace benzaldehyde, ulti-
mately giving undesired 3-methyl-vinylindanimine 6a
via tertiary alcohol intermediates K and L. We specu-
late that external benzaldehyde might impede this
side reaction via reacting with water to form its hy-
drate.
Before this work, the reactions between aldehydes
and monocarbonyl-substituted cyclopropanes required
Lewis acids in excess proportions (1.0 equiv.) to give
products through an addition reaction. Here, we
report a stereoselective Ag(I)-catalyzed [3+2] carbon-
yl cycloaddition for cyclopropyl-indanimines bearing
(7.2 mg, 0.018 mmol) was added a 1,2-dichloroethane solu-
tion (2.0 mL) of compound 3a (60 mg, 0.184 mmol) and ben-
zaldehyde (97.8 mg, 0.92 mmol); the mixture was heated to
808C for 1 h before the solution was filtered over a short
silica bed. The solvent was evaporated under reduced pres-
sure; the crude product was eluted through a silica gel
column to afford indanimine product 4a (yield: 57.2 mg,
0.132 mmol, 72%), and indanone product 4aꢀ (yield: 2.6 mg,
0.009 mmol, 5%) as a white solid. IR (neat): n=2920 (m),
1595 (m), 1577 (s), 1316 (s), 1155 (s), 875 (s), 671 cmꢀ1 (s);
1H NMR (400 MHz, CDCl3): d=7.61 (t, J=7.6 Hz, 2H),
7.55 (d, J=7.6 Hz, 1H), 7.48 (d, J=8.0 Hz, 2H), 7.35 (t, J=
7.2 Hz, 1H), 7.1–7.04 (m, 5H), 7.03 (d, J=8.0 Hz, 2H), 5.52
(d, J=9.6 Hz, 1H), 5.08 (dd, J=9.6, 6.4 Hz, 1H), 3.72 (d,
J=6.4 Hz, 1H), 2.35 (s, 3H), 1.64 (s, 3H), 1.55 (s, 3H);
13C NMR (100 MHz, CD2Cl2): d=184.4, 151.2, 144.1, 140.8,
138.4, 138.3, 134.8, 129.6, 129.4, 128.8, 128.3, 128.1, 127.8,
127.4, 124.5, 82.0, 81.5, 58.1, 55.8, 27.1, 25.1, 21.6; HR-MS:
m/z=431.1553, calcd. for C26H25NO3S: 431.1555.
a strained bicycloACHTNUGRTENUNG[3.1.0]hexane framework. The ste-
reochemical course of this cycloaddition is rational-
ized with a cyclic transition state.[2] The resulting
indanACHTUNGTRENNUNGimine cycloadducts are not readily hydrolyzed
unless external aldehydes are present with the silver
catalyst. The altered stereochemistry in the hydrolysis
is rationalized by a postulated retro-Prins rearrange-
ment,[12] followed by a Prins cyclization.[13]
Acknowledgements
We thank National Science Council and Education Ministry
for financial support of this work.
Experimental Section
Typical Procedure for Synthesis of N-(1,1-Dimethyl-
1,6a-dihydrocyclopropa[a]inden-6ACTHNUTRGNEUNG(1aH)-ylidene)-4-
References
methyl-benzenesulfonamide (3a)
[1] a) H.-U. Reissig, Top. Curr. Chem. 1988, 144, 73;
b) H. N. C. Wong, M. Y. Hon, C. W. Tse, Y. C. Yip, J.
Tango, T. Hudlicky, Chem. Rev. 1989, 89, 165; c) H.-U.
Reissig, R. Zimmer, Chem. Rev. 2003, 103, 1151; d) I. S.
Young, M. A. Kerr, Angew. Chem. 2003, 115, 3131;
Angew. Chem. Int. Ed. 2003, 42, 3023; e) M. Yu, B. L.
Pagenkopf, Tetrahedron 2005, 61, 321.
[2] Selected examples for catalytic cyclopropane/carbonyl
[3+2]cycloadditions, see: a) P. D. Pohlhaus, J. S. John-
son, J. Org. Chem. 2005, 70, 1057; b) P. D. Pohlhaus,
J. S. Johnson, J. Am. Chem. Soc. 2005, 127, 16014;
c) P. D. Pohlhaus, S. D. Sanders, A. T. Parsons, W. Li,
J. S. Johnson, J. Am. Chem. Soc. 2008, 130, 8462;
d) M. J. Campbell, J. S. Johnson, J. Am. Chem. Soc.
2009, 131, 10370; e) S. D. Sanders, A. Ruiz-Olalla, J. S.
Johnson, Chem. Commun. 2009, 5135; f) M. J. Camp-
bell, J. S. Johnson, A. T. Parsons, P. D. Pohlhaus, S. D.
Sanders, J. Org. Chem. 2010, 75, 6317; g) G. Yang, Y.
Shen, K. Li, Y. Sun, Y. Hua, J. Org. Chem. 2011, 76,
229.
To a 1,2-dichloroethane (4 mL) solution of compound 1a
(50 mg, 0.32 mmol) and (3,5-dichloropyridinium-1-yl)tosyl-
ACHTUNGTRENNUNGamide (121.8 mg, 0.38 mmol) was added a 1,2-dichloro-
ethane solution of (2.4 mL) IPrAuNTf2 (13.8 mg,
0.016 mmol); the mixture was heated to 808C for 2.5 h
before it was filtered over a short silica bed. Solvent was
evaporated under reduced pressure; the crude product was
eluted through a silica gel column to afford the indanimine
cycloadduct 3a as yellow oil; yield: 83 mg (0.26 mmol,
80%). IR (neat): n=2981 (m), 1615 (m), 1584 (s), 1319 (s),
1
1155 (s), 854 (s), 673 cmꢀ1 (s); H NMR (400 MHz, CDCl3):
d=7.90 (d, J=8.0 Hz, 2H), 7.72 (d, J=7.6 Hz, 1H), 7.46 (t,
J=7.6 Hz, 1H), 7.34 (d, J=7.6 Hz, 1H), 7.31 (d, J=8.0 Hz,
2H), 7.24 (t, J=7.6 Hz, 1H), 3.31 (d, J=4.4 Hz, 1H), 2.96
(d, J=4.4 Hz, 1H), 2.42 (s, 3H), 1.31 (s, 3H), 0.56 (s, 3H);
13C NMR (100 MHz, CDCl3): d=184.4, 150.2, 143.5, 139.2,
138.0, 134.2, 129.3, 127.4, 127.0, 125.2, 124.3, 49.7, 39.7, 38.6,
27.7, 21.5, 14.8; HR-MS: m/z=325.1142, calcd. for
C19H19NO2S: 325.1136.
[3] The reactions between moncarbonyl-substituted cyclo-
propanes and aldehydes require Lewis acid in excess
proportion (>1.0 equiv.) to give distinct addition prod-
ucts; see selected example: a) C. Brꢁckner, H.-U. Reis-
sig, J. Org. Chem. 1988, 53, 2440; b) H.-U. Reissig, H.
Holzinger, G. Glomsda, Tetrahedron 1989, 45, 3139;
c) C. H. Larsen, B. H. Ridgway, J. T. Shaw, K. A. Woer-
Adv. Synth. Catal. 2013, 355, 1545 – 1552
ꢀ 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1551