is now commercially available, and the FBSM method
has clear advantages over other methods for the synthesis
of chiral C*ÀCH2F compounds such as dehydroxy-
fluorination of C*ÀCH2OH compounds by DAST, since
asymmetric synthesis of chiral C*ÀCH2OH compounds
followed by racemization-free dehydroxyfluorination
should be required. A number of nucleophilic monofluor-
omethylation reactions using FBSM have emerged,7,8 and
the Mannich-type reaction via in situ generated imines is
effective for the asymmetric synthesis of R-monofluoro-
methylated amines (Scheme 1a).9 As an extension of this
work, herein we disclose an enantioselective monofluor-
omethylation reaction of C2-arylindoles 1 via vinylogous
imines generated in situ with FBSM to provide mono-
fluoromethylated indole derivatives 2 (Scheme 1b). The
key for these transformations is the effective use of the
arylsulfonyl group for the activation of both the substrates
and reagent, FBSM.10
Indole and its derivatives are important and common
structural motifs in pharmaceuticals and agrochemicals.11
In particular, C2-arylindoles are ubiquitous substructures
indoles.12 With these background facts, we were interested
in the asymmetric synthesis of C2-arylindoles having a
CH2F group on the chiral center. The idea for the genera-
tion of vinylogous imines of indoles using an arylsulfonyl
group as a leaving group was initially reported by Petrini
group. Broad scopes of C3-substituted indoles can be
obtained via this method.13
Scheme 1. Strategies for Enantioselective Monofluoromethyla-
tion via in Situ Generated Imines (a) and Vinylogous Imines (b)
Using FBSM
Although some work on enantioselective nucleophilic
additions to vinylogous imine intermediates generated
from arylsulfonyl indoles 1 under organo or Lewis acid
catalysis has been reported,14 these conditions are not
applicable for the monofluoromethylation of 1 by FBSM,
since the activation of the CH group of FBSM requires a
stronger basic condition. We first tested the monofluor-
omethylation reaction of arylsulfonyl indoles 1a with
FBSM under the best conditions for our reported asym-
metric Mannich-type fluoromethylation reaction using
benzylquinidium chloride 3a as a phase-transfer catalyst
in the presence of K2CO3 in CH2Cl2 at room temperature.
However, the initial attempt was quite disappointing, and
a racemic product 2a was afforded in 56% yield (Table 1,
entry 1). Similar results were obtained when the reaction
was performed in the presence of catalysts QN-3b or
CD-3d, respectively (entries 2 and 4). The enantioselec-
tivity increased slightly to 16% when benzylcinchoninium
chloride CN-3c was attempted (entry 3). Then we tried to
tune the steric hindrance of the catalyst based on CN-3c
(entries 5À7). In the presence of benzylcinchoninium
bromide CN-3f, which bears a sterically demanding benzyl
substituent, high yield with an acceptable enantioselectiv-
ity (70%) was afforded (entry 6). After screening various
basesand solvents(Table1, entries8À10),15 a combination
of CN-3f and Cs2CO3 in toluene gave (R)-2a with high
enantioselectivity, up to 74% ee (entry 10). Further opti-
mization of reaction temperature and concentration was
studied, and high enantioselectivity (90% ee) was found in
toluene (0.040 M) at À10 °C (entry 12). It should be noted
that OH-protected derivative CN-3h led to high yield but
low enantioselectivity (entry 14). The result indicated
that the free hydroxy group of the cinchona alkaloid is
(7) (a) Furukawa, T.; Kawazoe, J.; Zhang, W.; Nishimine, T.; Tokunaga,
E.; Matsumoto, T.; Shiro, M.; Shibata, N. Angew. Chem., Int. Ed. 2011, 50,
9684. (b) Furukawa, T.; Goto, Y.; Kawazoe, J.; Tokunaga, E.; Nakamura,
S.; Yang, Y.; Du, H.; Kakehi, A.; Shiro, M.; Shibata, N. Angew. Chem., Int.
Ed. 2010, 49, 1642. (c) Shibata, N.; Furukawa, T.; Reddy, D. S. Chem. Today
2009, 27, 38. (d) Ogasawara, M.; Murakami, H.; Furukawa, T.; Takahashi,
T.; Shibata, N. Chem. Commun. 2009, 7366. (e) Furukawa, T.; Shibata, N.;
Mizuta, S.; Nakamura, S.; Toru, T.; Shiro, M. Angew. Chem., Int. Ed. 2008,
47, 8051.
(8) (a) Prakash, G. K. S.; Gurung, L.; Jog, P. V.; Tanaka, S.; Thomas,
T. E.; Ganesh, N.; Haiges, R.; Mathew, T.; Olah, G. A. Chem.;Eur. J. 2013,
19, 3579. (b) Yang, W.; Wei, X.; Pan, Y.; Lee, R.; Zhu, B.; Liu, H.; Yan, L.;
Huang, K.-W.; Jiang, Z.; Tan, C.-H. Chem.;Eur. J. 2011, 17, 8066. (c)
Zhang, S.-L.; Xie, H.-X.; Zhu, J.; Li1, H.; Zhang, X.-S.; Li, J.; Wang, W. Nat.
Commun. 2011, 2, 211. (d) Prakash, G. K. S.; Chacko, S.; Vaghoo, H.; Shao,
N.;Gurung, L.;Mathew,T.;Olah,G.A.Org. Lett. 2009,11, 1127. (e) Zhang,
S.; Zhang, Y.; Ji, Y.; Li, H.; Wang, W. Chem. Commun. 2009, 4886. (f) Alba,
A. N.; Companyo, X.; Moyano, A.; Rios, R. Chem.;Eur. J. 2009, 15, 7035.
(g) Ullah, F.; Zhao, G. L.; Deiana, L.; Zhu, M.; Dziedzic, P.; Ibrahem, I.;
Hammar, P.; Sun, J.; Cordova, A. Chem.;Eur. J. 2009, 15, 10013. (h)
Moon, M. H. W.; Cho, J.; Kim, D. Y. Tetrahedron Lett. 2009,50, 4896. (i) Ni,
C.; Hu, J. Tetrahedron Lett. 2009, 50, 7252. (j) Prakash, G. K. S.; Zhao, X.;
Chacko, S.; Wang, F.; Vaghoo, H.; Olah, G. A. Beilstein J. Org. Chem. 2008,
4, 17. (k) Ni, C.; Zhang, L.; Hu, J. J. Org. Chem. 2008, 73, 5699. (l) Prakash,
G. K. S.; Chacko, S.; Alconcel, S.; Stewart, T.; Mathew, T.; Olah, G. A.
Angew. Chem., Int. Ed. 2007, 46, 4933. (m) Ni, C.; Li, Y.; Hu, J. J. Org. Chem.
2006, 71, 6829.
(9) Mizuta, S.; Shibata, N.; Goto, Y.; Furukawa, T.; Nakamura, S.;
Toru, T. J. Am. Chem. Soc. 2007, 129, 6394.
(10) Alba, A.-N. R.; Companyo, X.; Rios, R. Chem. Soc. Rev. 2010,
39, 2018.
(11) Bandini, M.; Eichholzer, A. Angew. Chem., Int. Ed. 2009, 48,
9608.
(12) Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873.
(13) (a) Palmieri, A.; Petrini, M.; Shaikh, R. R. Org. Biomol. Chem.
2010, 8, 1259. (b) Ballini, R.; Palmieri, A.; Petrini, M.; Torregiani, E.
Org. Lett. 2006, 8, 4093. (c) Palmieri, A.; Petrini, M. J. Org. Chem. 2007,
72, 1863. (d) Ballini, R.; Palmieri, A.; Petrini, M.; Shaikha, R. R. Adv.
Synth. Catal. 2008, 350, 129. (e) Petrini, M.; Shaikh, R. R. Tetrahedron
Lett. 2008, 49, 5645. (f) Marsili, L.; Palmieri, A.; Petrini, M. Org. Biomol.
Chem. 2010, 8, 706.
(14) (a) Shaikh, R. R.; Mazzanti, A.; Petrini, M.; Bartoli, G.;
Melchiorre, P. Angew. Chem., Int. Ed. 2008, 47, 8707. (b) Dobish,
M. C.; Johnston, J. N. Org. Lett. 2010, 12, 5744. (c) Fochi, M.;
Gramigna, L.; Mazzanti, A.; Duce, S.; Fantini, S.; Palmieri, A.; Petrini,
M.; Bernardia, L. Adv. Synth. Catal. 2012, 354, 1373. (d) Jing, L.; Wei, J.;
Zhou, L.; Huang, Z.; Li, Z.; Wu, D.; Xiang, H.; Zhou, X. Chem.;Eur. J.
2010, 16, 10955. (e) Zheng, B.-H.; Ding, C.-H.; Hou, X.-L.; Dai, L.-X.
Org. Lett. 2010, 12, 1688. (f) Qin, D.-B.; Liu, Q.-Z.; Jing, L.-H. Eur. J.
Org. Chem. 2013, 456. (g) Dubey, R.; Olenyuk, B. Tetrahedron Lett.
2010, 51, 609. (h) Wang, J.; Zhou, S.; Lin, D.; Ding, X.; Jiang, H.; Liu, H.
Chem. Commun. 2011, 47, 8355.
(15) Among the solvents tested, toluene was optimal. Reactions
conducted in more polar solvents showed increased background reac-
tivity and decrease in enantiocontrol.
B
Org. Lett., Vol. XX, No. XX, XXXX