PRACTICAL SYNTHETIC PROCEDURES
Oxidative Coupling of Aryls Using MoCl5
1163
(2) (a) O’Regan, B.; Grätzel, M. Nature 1991, 353, 737.
Commercial reagents were used as supplied. All reagents were used
of analytical grades. Solvents were dried if necessary by standard
methods. Flash chromatography was performed on silica gel (40–
60 μm, Merck, Darmstadt, Germany) by using mixtures of cyclo-
hexane with EtOAc or CH2Cl2 with MeOH as eluents. Silica gel 60
sheets on glass (F254, Merck, Darmstadt, Germany) were used for
TLC. Melting points were determined by a Melting Point Apparatus
B-545 (Büchi, Flawil, Switzerland) and are uncorrected. Microanal-
ysis was performed with a VarioMICRO cube (Elementaranalysen-
(b) Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissörtel,
F.; Salbeck, J.; Spreitzer, H.; Grätzel, M. Nature 1998, 395,
583. (c) Bach, U.; Tachibana, Y.; Moser, J. E.; Haque, S. A.;
Durrant, J. R.; Grätzel, M.; Klug, D. R. J. Am. Chem. Soc.
1999, 121, 7445. (d) Schmidt-Mende, L.; Bach, U.;
Humphry-Baker, R.; Horiuchi, T.; Miura, H.; Ito, S.; Uchida,
S.; Grätzel, M. Adv. Mater. 2005, 17, 813. (e) Schmidt-
Mende, L.; Kroeze, J. E.; Durrant, J. R.; Nazeeruddin, M. K.;
Grätzel, M. Nano Lett. 2005, 5, 1315.
1
systeme, Hanau, Germany). H NMR and 13C NMR spectra were
recorded at 25 °C by using a Bruker AC 300 instrument (Analyt-
ische Messtechnik, Karlsruhe, Germany). All 1H NMR experiments
are reported in δ units, parts per million (ppm) downfield from TMS
(internal standard) and were measured relative to the signal for re-
sidual CHCl3 (7.26 ppm) or DMSO-d5 (2.50 ppm) in the deuterated
solvent. All 13C NMR spectra are reported in ppm relative to CDCl3
(77.16 ppm) or deuterated DMSO (39.52 ppm), and all were ob-
(3) (a) Steuber, F.; Staudigl, J.; Stössel, M.; Simmerer, J.;
Winnacker, A.; Spreitzer, H.; Weissörtel, F.; Salbeck, J. Adv.
Mater. 2000, 12, 130. (b) Omer, K. M.; Ku, S.-Y.; Cheng, J.-
Z.; Chou, S.-H.; Wong, K.-T.; Bard, A. J. J. Am. Chem. Soc.
2011, 133, 5492. (c) Polo, F.; Rizzo, F.; Veiga-Gutierrez,
M.; De Cola, L.; Quici, S. J. Am. Chem. Soc. 2012, 134,
15402. (d) Nakagawa, T.; Ku, S.-Y.; Wong, K.-T.; Adachi,
C. Chem. Commun. 2012, 48, 9580. (e) Okuda, H.; Seto, R.;
Koyama, Y.; Takata, T. J. Polym. Sci., Part A: Polym. Chem.
2010, 48, 4192. (f) Lei, T.; Cheng, C.-Y.; Guo, Z.-H.;
Zheng, C.; Zhou, Y.; Liang, D.; Pei, J. J. Mater. Chem. 2012,
22, 4306. (g) Weber, J.; Thomas, A. J. Am. Chem. Soc. 2008,
130, 6334. (h) Luo, J.; Lei, T.; Wang, L.; Ma, Y.; Cao, Y.;
Wang, J.; Pei, J. J. Am. Chem. Soc. 2009, 131, 2076.
(i) Shen, J. Y.; Lee, C. Y.; Huang, T. H.; Lin, J. T.; Tao, Y.
T.; Chien, C. H.; Tsai, C. J. Mater. Chem. 2005, 15, 2455.
(j) Wu, C. C.; Lin, Y. T.; Wong, K. T.; Chen, R. T.; Chien,
Y. Y. Adv. Mater. 2004, 16, 61. (k) Oyston, S.; Wang, C.;
Hughes, G.; Batsanov, A. S.; Perepichka, I. F.; Bryce, M. R.;
Ahn, J. H.; Pearson, C.; Petty, M. C. J. Mater. Chem. 2005,
15, 194. (l) He, G.; Pfeiffer, M.; Leo, K.; Hofmann, M.;
Birnstock, J.; Pudzich, R.; Salbeck, J. Appl. Phys. Lett. 2004,
85, 3911.
(4) (a) Saragi, T. P. I.; Fuhrmann-Lieker, T.; Salbeck, J. Adv.
Funct. Mater. 2006, 16, 966. (b) Saragi, T. P. I.; Fuhrmann-
Lieker, T.; Salbeck, J. Synth. Met. 2005, 148, 267.
(5) (a) Montero, V. A.; Tomlinson, L.; Houk, K. N.; Diederich,
F. Tetrahedron Lett. 1991, 32, 5309. (b) Alcazar, V.;
Diederich, F. Angew. Chem., Int. Ed. Engl. 1992, 31, 1521.
(c) Cuntze, J.; Owens, L.; Alcazar, V.; Seiler, P.; Diederich,
F. Helv. Chim. Acta 1995, 78, 367. (d) Cuntze, J.; Diederich,
F. Helv. Chim. Acta 1997, 80, 897. (e) Smith, D. K.;
Diederich, F. Chem. Commun. 1998, 2501. (f) Weber, E.;
Ahrendt, J.; Czugler, M.; Csöregh, I. Angew. Chem., Int. Ed.
Engl. 1986, 25, 746. (g) Das, G.; Hamilton, A. D.
1
tained by H decoupling. Mass spectra and high-resolution mass
spectra were obtained by using a QTof Ultima 3 (Waters, Milford,
Massachusetts) apparatus employing ESI. All X-ray analysis data
were collected on a STOE IPDS-2T diffractometer at –80 °C using
graphite monochromated MoKα radiation (λ = 0.71073 Å). The
structures were solved by direct methods and refined anisotropical-
ly by the least-squares procedure implemented in the SHELX pro-
gram system22 (for details, see the Supporting Information).
2,7-Diiodo-2′,3′,6′,7′-tetramethoxy-9,9-spirobifluorene (4);
Typical Procedure
2,7-Diiodo-9,9-bis(3,4-dimethoxyphenyl)fluorene (109.8 mg, 0.16
mmol) was added to a mixture of MoCl5 (132 mg, 0.48 mmol) and
CH2Cl2 (8 mL) and stirred at 23 °C for 4 h under an argon atmo-
sphere. Then, sat. aq NaHCO3 (10 mL) was added and the reaction
mixture was stirred for additional 2 min. The organic layer was sep-
arated and the aqueous layer was extracted with CH2Cl2 (3 × 50
mL). The combined organic fractions were dried (MgSO4), and the
solvent was evaporated. The crude product was purified by flash-
column chromatography (eluent: CH2Cl2) to yield the desired spiro-
bifluorene 4 as a colorless solid (100.1 mg, 92%). For analytical
purposes the product can be recrystallized from CH2Cl2–MeOH by
slow evaporation of the solvent; mp 258.1 °C.
1H NMR (300 MHz, CDCl3): δ = 7.69 (dd, J = 8.1, 1.4 Hz, 2 H),
7.54 (d, J = 8.1 Hz, 2 H), 7.23 (s, 2 H), 7.03 (d, J = 1.4 Hz, 2 H),
6.14 (s, 2 H), 5.29 (s, 2 H), 4.03 (s, 6 H), 3.65 (s, 6 H).
13C NMR (75 MHz, CDCl3): δ = 151.1, 150.1, 149.1, 140.6, 139.4,
137.3, 135.0, 133.4, 122.1, 107.3, 102.8, 94.0, 65.6, 56.6, 56.5.
HRMS-ESI (+): m/z calcd for C29H22I2O4 + Na [M + Na]+:
710.9505; found: 710.9503.
Tetrahedron Lett. 1997, 38, 3675. (h) Tejeda, A.; Oliva, A.
I.; Simon, L.; Grande, M.; Caballero, M. C.; Morán, J. R.
Tetrahedron Lett. 2000, 41, 4563. (i) Czugler, M.;
Stezowski, J. J.; Weber, E. J. Chem. Soc., Chem. Commun.
1983, 154. (j) Demers, E.; Maris, T.; Wuest, J. D. Cryst.
Growth Des. 2005, 5, 1227. (k) Fournier, J.-H.; Maris, T.;
Wuest, J. D. J. Org. Chem. 2004, 69, 1762. (l) Collins, C. S.;
Sun, D.; Liu, W.; Zuo, J.-L.; Zhou, H.-C. J. Mol. Struct.
2008, 890, 163.
Acknowledgment
Support by H.C. Stark GmbH, Goslar, Germany, by a donation of
MoCl5 is highly appreciated.
Supporting Information for this article is available online at
(6) (a) Lützen, A.; Thiemann, F.; Meyer, S. Synthesis 2002,
2771. (b) Thiemann, F.; Piehler, T.; Saak, W.; Haase, D.;
Lützen, A. Eur. J. Org. Chem. 2005, 1991. (c) Piehler, T.;
Lützen, A. Z. Naturforsch., B 2010, 65, 329. (d) Poriel, C.;
Ferrand, Y.; Le Maux, P.; Paul, C.; Rault-Berthelot, J.;
Simonneaux, G. Chem. Commun. 2003, 2308. (e) Poriel, C.;
Ferrand, Y.; Le Maux, P.; Raul-Berthelot, J.; Simonneaux,
G. Chem. Commun. 2003, 1104. (f) Poriel, C.; Ferrand, Y.;
Le Maux, P.; Rault-Berthelot, J.; Simonneaux, G.
n
nfomartit
References
(1) For excellent reviews, see: (a) Saragi, T. P. I.; Spehr, T.;
Siebert, A.; Fuhrmann-Lieker, T.; Salbeck, J. Chem. Rev.
2007, 107, 1011. (b) Grätzel, M. Curr. Opin. Colloid
Interface Sci. 1999, 314. (c) Kanibolotsky, A. L.;
Perepichka, I. F.; Skabara, P. J. Chem. Soc. Rev. 2010, 39,
2695.
Tetrahedron Lett. 2003, 44, 1759.
(7) Winter-Werner, B.; Diederich, F.; Gramlich, V. Helv. Chim.
Acta 1996, 79, 1338.
© Georg Thieme Verlag Stuttgart · New York
Synthesis 2013, 45, 1160–1164