Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
Notes and references
DOI: 10.1039/C8CC03191F
1
Perspectives on deciphering organic reaction mechanisms: (a)
D. G. Blackmond, Angew. Chem. Int. Ed., 2005, 44, 4302–4320;
(b) D. G. Blackmond, J. Am. Chem. Soc., 2015, 137, 10852–
10866; (c) G.-J. Cheng, X. Zhang, L. W. Chung, L. Xu, and Y.-D.
Wu, J. Am. Chem. Soc., 2015, 137, 1706–1725.
2
(a) J. Li, M. J. Lear, Y. Kawamoto, S. Umemiya, A. Wong, E.
Kwon, I. Sato and Y. Hayashi, Angew. Chem. Int. Ed., 2015, 54
,
12986–12990; (b) J. Li, M. J. Lear, E. Kwon and Y. Hayashi,
Chem. Eur. J., 2016, 22, 5538–5542.
(a) Y. Hayashi and S. Umemiya, Angew. Chem. Int. Ed., 2013,
52, 3450–3452; (b) S. Umemiya, K. Nishino, I. Sato and Y.
Hayashi, Chem. Eur. J., 2014, 20, 15753–15759.
Challenging O2-mediated amidations of 1,1-dicyanoalkanes
via dioxiranes and acyl cyanides: J. Li, M. J. Lear and Y. Hayashi,
Angew. Chem. Int. Ed., 2016, 55, 9060–9064.
3
4
5
For umpolung amidation mechanisms via putative N-iodo
amines, see: (a) B. Shen, D. M. Makley and J. N. Johnston,
Nature, 2010, 465, 1027–1032; (b) Shackleford, J. P.; Shen, B.;
Johnston, J. N. Proc. Natl. Acad. Sci. USA 2012, 109, 44–46; (c)
K. E. Schwieter, B. Shen, J. P. Shackleford, M. W. Leighty, J. N.
Johnston, Org. Lett., 2014, 16, 4714–4717.
6
Classical and emerging uses of nitroalkanes in synthesis: (a) D.
Seebach, E. W. Colvin, F. Lehr and T. Weller, Chimia, 1979, 33
,
1–18; (b) A. G. M. Barrett, D. Dhanak, G. G. Graboski and S. J.
Taylor, Organic Synthesis, 1989, 68, 8–13; (c) N. Ono, The
Nitro Group in Organic Synthesis, Wiley-VCH, New York, 2001;
(d) R. Ballini and M. Petrini, Tetrahedron, 2004, 60, 1017–
1047; (e) M. W. Leighty, J. P. Shackleford, B. Shen and J. N.
Johnston, Proc. Natl. Acad. Sci. USA, 2012, 109, 44–46.
Scheme 2. Oxidative esterification and lactonisation of readily prepared primary
nitroalkanes into sterically congested methyl or ethyl esters.
7
8
9
Such reactions can be argued to be autoinductive or
autocatalytic. For leading perspectives in catalysis, see: (a) D.
G. Blackmond, Angew. Chem. Int. Ed., 2009, 48, 386–390; (b)
A. J. Bissette and S. P. Fletcher, Angew. Chem. Int. Ed., 2013,
52, 12800–12826; (c) M. P. Mower and D. G. Blackmond, J.
Am. Chem. Soc., 2015, 137, 2386–2391; (d) A. Studer and D. P.
Curran, Angew. Chem. Int. Ed., 2016, 55, 58–102.
In summary, the direct aerobic conversion of
,-
diiodonitroalkanes to amides or esters with relatively weak
2
nucleophiles was found to display unusual sigmoidal reaction
profiles, as evidenced by quantitative 1H NMR and React-IR
studies (Fig. 3). Systematic addition of sub-stoichiometric
Extensive equilibria can occur between I2, I– and I3– in solution.
Alternative [In]– species are thus conceivable catalysts: (a) R.
L. Benoit, M. F. Wilson and S.-Y. Lam, Can. J. Chem., 1977, 55
,
amounts of potential products derived from
2 (Eq. (2)) clearly
792–797; (b) J. M. Gardner, M. Abrahamsson, B. H. Farnum
and G. J. Meyer, J. Am. Chem. Soc., 2009, 131, 16206–16214;
(c) L. Li, W. B. Liu, H. Y. Zeng, X. Y. Mu, G. Cosa, Z. T. Mi and C.-
J. Li, J. Am. Chem. Soc., 2015, 137, 8328–8331.
identified mono-iodide anions to accelerate the reaction. Due
to the increasing generation of up to two-equivalents of iodine
byproducts after each catalytic cycle,8 we herein propose a new
case of autoinduction,7 whereby the iodide-mediated formation
Oxidation of iodide to iodine in the presence of O2: A. B.
Couto, D. Cassoli de Souza, E. R. Sartori, P. Jacob, D. Klockow
and E. A. Neves, Anal. Lett., 2006, 39, 2763–2774.
of O2-reactive carbon radicals 10 from
2 is reasoned to occur
through an iodine-atom transfer event (Scheme 1).11 Under this
mechanistic framework, we developed a convenient one-pot
10 Iodide catalysed C–I bond cleavage in polymer synthesis: A.
Goto, A. Ohtsuki, H. Ohfuji, M. Tanishima and H. Kaji, J. Am.
Chem. Soc., 2013, 135, 11131–11139.
oxidative transformation of readily prepared
-
-
trisubstituted nitroalkanes15 into sterically encumbered
11 N. Zhang, S. R. Samanta, B. M. Rosen and V. Percec, Chem.
Rev., 2014, 114, 5848−5958.
trisubstituted esters, which are difficult to access directly by
conventional methods.14 Application of these fundamental
understandings7–13 to useful metal-free and iodine-based
oxidative transformations are ongoing.2–6
12 Peroxy-adduct generation from dihaloalkanes: (a) J. M.
Beames, F. Liu, L. Lu, M. I. Lester, J. Am. Chem. Soc., 2012, 134
,
20045–20048; (b) X. Ge, K. L. M. Hoang, M. L. Leow and X.-W.
Liu, RSC Adv., 2014, , 45191–45197.
4
13 Iodide and superoxide can reduce dioxiranes to ketones: W.
Adam, G. Asensio, R. Curci, M. E. González-Núñez, R. Mello, J.
Am. Chem. Soc., 1992, 114, 8345–8349.
We thank Mr. Yuki Haro of Mettler-Teledo K.K. for providing
React-IR analysis support and equipment. We also thank
Professor E. Kwon of Tohoku University, Japan, for X-ray data
analysis and support. This work was funded by JSPS KAKENHI
Grant Number JP 16K13942.
14 (a) N. Kornblum and P. A. Wade, J. Org. Chem., 1973, 38
,
1418–1420; (b) C. Matt, A. Wagner and C. Mioskowski, J. Org.
Chem., 1997, 62, 234–235.
15 Y. Hayashi, Y. Kawamoto, M. Honada, D. Okamura, S.
Umemiya, Y. Noguchi, T. Mukaiyama and I. Sato, Chem. Eur.
J., 2014, 38, 12072–12082.
Conflicts of interest
There are no conflicts to declare.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins