Organic Letters
Letter
(c) Peneau, A.; Retailleau, P.; Guillou, C.; Chabaud, L. J. Org. Chem.
2018, 83, 2324−2340.
ACKNOWLEDGMENTS
■
(10) For the synthesis of eight-membered lactams via RhIII-catalyzed
formal [4 + 2 + 2] cyclization, see: Wu, S.; Zeng, R.; Fu, C.; Yu, Y.;
Zhang, X.; Ma, S. Chem. Sci. 2015, 6, 2275−2285.
́
We thank the Spanish Ministerio de Economıa y Compet-
itividad (Project CTQ2015-66954-P, MINECO/FEDER, UE)
for financial support. M.M.-M. thanks MINECO for an FPI
Predoctoral Fellowship and the Fondo Social Europeo for
financial support. N.R. thanks the European Commission for a
Marie Curie Career Integration Grant (CIG: CHAAS-
(11) For selected examples of the synthesis of five- and six-
membered-ring benzolactams, see: (a) Orito, K.; Horibata, A.;
Nakamura, T.; Ushito, H.; Nagasaki, H.; Yuguchi, M.; Yamashita,
S.; Tokuda, M. J. Am. Chem. Soc. 2004, 126, 14342−14343.
́
́
304085). Prof. Ines Alonso (Departamento de Quımica
́
(b) Lopez, B.; Rodriguez, A.; Santos, D.; Albert, J.; Ariza, X.;
́
Organica, UAM) is gratefully acknowledged for helpful
Garcia, J.; Granell, J. Chem. Commun. 2011, 47, 1054−1056.
(c) Haffemayer, B.; Gulias, M.; Gaunt, M. J. Chem. Sci. 2011, 2,
312−315. (d) Shi, R.; Lu, L.; Zhang, H.; Chen, B.; Sha, Y.; Liu, C.;
Lei, A. Angew. Chem., Int. Ed. 2013, 52, 10582−10585. (e) Liang, D.;
Hu, Z.; Peng, J.; Huang, J.; Zhu, Q. Chem. Commun. 2013, 49, 173−
175. (f) Taneda, H.; Inamoto, K.; Kondo, Y. Org. Lett. 2016, 18,
2712−2715. (g) Ling, F.; Ai, C.; Lv, Y.; Zhong, W. Adv. Synth. Catal.
2017, 359, 3707−3712. (h) Zhang, C.; Ding, Y.; Gao, Y.; Li, S.; Li, G.
Org. Lett. 2018, 20, 2595−2598. (i) Cheng, X.-F.; Wang, T.; Li, Y.;
Wu, Y.; Sheng, J.; Wang, R.; Li, C.; Bian, K.-J.; Wang, X.-S. Org. Lett.
2018, 20, 6530−6533.
discussions.
REFERENCES
■
(1) (a) Scott, L. J.; Goa, K. L. Drugs 2000, 60, 1095−1122.
(b) Aoyama, A.; Endo-Umeda, K.; Kishida, K.; Ohgane, K.; Noguchi-
Yachide, T.; Aoyama, H.; Ishikawa, M.; Miyachi, H.; Makishima, M.;
Hashimoto, Y. J. Med. Chem. 2012, 55, 7360−7377. (c) Gillmore, A.
T.; Badland, M.; Crook, C. L.; Castro, N. M.; Critcher, D. J.; Fussell,
S. J.; Jones, K. J.; Jones, M. C.; Kougoulos, E.; Mathew, J. S.;
McMillan, L.; Pearce, J. E.; Rawlinson, F. L.; Sherlock, A. E.; Walton,
R. Org. Process Res. Dev. 2012, 16, 1897−1904. (d) Bakulina, O.;
Chizhova, M.; Dar’in, D.; Krasavin, M. Eur. J. Org. Chem. 2018, 2018,
362−371.
(12) For the synthesis of β-lactams via C−H carbonylation, see:
(a) Li, W.; Liu, C.; Zhang, H.; Ye, K.; Zhang, G.; Zhang, W.; Duan,
Z.; You, S.; Lei, A. Angew. Chem., Int. Ed. 2014, 53, 2443−2446.
(13) For stoichiometric Pd-mediated carbonylation of 3-phenyl-
(2) For recent overviews, see: (a) Ryan, J. H.; Smith, J. A.; Hyland,
C.; Meyer, A. G.; Williams, C. C.; Bissember, A. C.; Just, J. Prog.
Heterocycl. Chem. 2015, 27, 531−573. (b) Meyer, A. G.; Bissember, A.
C.; Hyland, C.; Smith, J. A.; Williams, C. C.; Zamani, F.; Abel, S.-A.
G. Prog. Heterocycl. Chem. 2017, 29, 579−633.
(3) For recent examples of asymmetric synthesis of azepines, see:
(a) Claraz, A.; Serpier, F.; Darses, S. ACS Catal. 2017, 7, 3410−3413.
(b) Zhu, C.-Z.; Feng, J.-J.; Zhang, J. Angew. Chem., Int. Ed. 2017, 56,
1351−1355. (c) Zawodny, W.; Montgomery, S. L.; Marshall, J. R.;
Finnigan, J. D.; Turner, N. J.; Clayden, J. J. Am. Chem. Soc. 2018, 140,
17872−17877. (d) Rahman, A.; Xie, E.; Lin, X. Org. Biomol. Chem.
2018, 16, 1367−1374.
(4) For recent reviews, see: (a) Transition Metal-Catalyzed
Heterocycle Synthesis via C−H Activation; Wu, X.-F., Ed.; Wiley-
VCH: Weinheim, Germany, 2016. (b) Thansandote, P.; Lautens, M.
Chem. - Eur. J. 2009, 15, 5874−5883. (c) Stokes, B. J.; Driver, T. G.
Eur. J. Org. Chem. 2011, 2011, 4071−4088. (d) Shaikh, T. M.; Hong,
F.-E. J. Organomet. Chem. 2016, 801, 139−156. (e) Baudoin, O. Acc.
Chem. Res. 2017, 50, 1114−1123. (f) Ujwaldev, S. M.; Harry, N. A.;
Divakar, M. A.; Anilkumar, G. Catal. Sci. Technol. 2018, 8, 5983−
6018. (g) Liu, X.; Huang, Y.; Meng, X.; Li, J.; Wang, D.; Chen, Y.;
Tang, D.; Chen, B. Synlett 2019, 30, 1026−1036.
(5) (a) Shi, Z.; Grohmann, C.; Glorius, F. Angew. Chem., Int. Ed.
2013, 52, 5393−5397. (b) Cui, S.; Zhang, Y.; Wang, D.; Wu, Q.
Chem. Sci. 2013, 4, 3912−3916. (c) Su, Y.-T.; Wang, Y.-L.; Wang, G.-
W. Org. Chem. Front. 2014, 1, 689−693. (d) Rodríguez, A.; Albert, J.;
́
propylamines, see: Frutos-Pedreno, R.; García-Sanchez, E.; Oliva-
̃
Madrid, M. J.; Bautista, D.; Martínez-Viviente, E.; Saura-Llamas, I.;
Vicente, J. Inorg. Chem. 2016, 55, 5520−5533.
́
(14) Hernando, E.; Villalva, J.; Martínez, A. M.; Alonso, I.;
́
́
Rodríguez, N.; Gomez Arrayas, R.; Carretero, J. C. ACS Catal.
2016, 6, 6868−6882.
(15) γ-Arylated and γ,γ-diarylated α-amino acid derivatives were
readily prepared via N-SO2Py-directed, Pd-catalyzed γ-C−H arylation
and diarylation with iodoarenes. See: Rodríguez, N.; Romero-Revilla,
́
́
̃
ez, M. A.; Carretero, J. C. Chem. Sci. 2013, 4,
J. A.; Fernandez-Iban
175−179.
(16) For a review of Mo(CO)6-mediated, Pd-catalyzed carbon-
ylations, see: Åkerbladh, L.; Odell, L. R.; Larhed, M. Synlett 2019, 30,
141−155.
(17) A similar decrease in reactivity was observed upon moving from
the alloisoleucine to isoleucine series in acyclic systems (see the SI).
(18) For recent examples of the use of N-SO2Py in C−H
́
functionalization, see: (a) García-Rubia, A.; Urones, B.; Gomez
́
Arrayas, R.; Carretero, J. C. Angew. Chem., Int. Ed. 2011, 50, 10927−
10931. (b) Urones, B.; Gomez Arrayas, R.; Carretero, J. C. Org. Lett.
2013, 15, 1120−1123. (c) Urones, B.; Martínez, A. M.; Rodríguez,
N.; Gomez Arrayas, R.; Carretero, J. C. Chem. Commun. 2013, 49,
11044−11046. (d) Mei, T.-S.; Leow, D.; Xiao, H.; Laforteza, B. N.;
Yu, J.-Q. Org. Lett. 2013, 15, 3058−3061. (e) Yan, Z.-L.; Chen, W.-L.;
Gao, Y.-R.; Mao, S.; Zhang, Y.-L.; Wang, Y.-Q. Adv. Synth. Catal.
́
́
́
́
́
2014, 356, 1085−1092. (f) Legarda, P. D.; García-Rubia, A.; Gomez
́
Arrayas, R.; Carretero, J. C. Tetrahedron 2018, 74, 3947−3954.
̀
́
Ariza, X.; Garcia, J.; Granell, J.; Farras, J.; La Mela, A.; Nicolas, E. J.
Org. Chem. 2014, 79, 9578−9585. (e) Wang, X.; Tang, H.; Feng, H.;
Li, Y.; Yang, Y.; Zhou, B. J. Org. Chem. 2015, 80, 6238−6249.
(f) Wang, J.; Wang, L.; Guo, S.; Zha, S.; Zhu, J. Org. Lett. 2017, 19,
3640−3643. (g) Pandey, A. K.; Han, S. H.; Mishra, N. K.; Kang, D.;
Lee, S. H.; Chun, R.; Hong, S.; Park, J. S.; Kim, I. S. ACS Catal. 2018,
8, 742−746.
(19) For recent reviews of late-stage C−H functionalization, see:
(a) Cernak, T.; Dykstra, K. D.; Tyagarajan, S.; Vachal, P.; Krska, S. W.
Chem. Soc. Rev. 2016, 45, 546−576. (b) Sengupta, S.; Mehta, G.
Tetrahedron Lett. 2017, 58, 1357−1372. (c) Lu, X.; He, S.-J.; Cheng,
W.-M.; Shi, J. Chin. Chem. Lett. 2018, 29, 1001−1008. (d) Karimov,
R. R.; Hartwig, J. F. Angew. Chem., Int. Ed. 2018, 57, 4234−4241.
(e) Wang, W.; Lorion, M. M.; Shah, J.; Kapdi, A. R.; Ackermann, L.
Angew. Chem., Int. Ed. 2018, 57, 14700−14717. Also see: (f) Zhan,
B.-B.; Fan, J.; Jin, L.; Shi, B.-F. ACS Catal. 2019, 9, 3298−3303.
(g) Kaplaneris, N.; Rogge, T.; Yin, R.; Wang, H.; Sirvinskaite, G.;
Ackermann, L. Angew. Chem., Int. Ed. 2019, 58, 3476−3480. (h) Tan,
J.; Wu, J.; Liu, S.; Yao, H.; Wang, H. Sci. Adv. 2019, 5, eaaw0323.
(20) Hughes, D. L. Org. Process Res. Dev. 2017, 21, 1227−1244.
(21) Li, J.-J.; Giri, R.; Yu, J.-Q. Tetrahedron 2008, 64, 6979−6987.
(6) Wang, L.; Huang, J.; Peng, S.; Liu, H.; Jiang, X.; Wang, J. Angew.
Chem., Int. Ed. 2013, 52, 1768−1772.
(7) Newton, C. G.; Braconi, E.; Kuziola, J.; Wodrich, M. D.; Cramer,
N. Angew. Chem., Int. Ed. 2018, 57, 11040−11044.
(8) (a) Pintori, D. G.; Greaney, M. F. J. Am. Chem. Soc. 2011, 133,
1209−1211. (b) Kondapalli, V.; Yu, X.; Yamamoto, Y.; Bao, M. J. Org.
Chem. 2017, 82, 2288−2293.
(9) (a) Zhu, C.; Liang, Y.; Hong, X.; Sun, H.; Sun, W.-Y.; Houk, K.
N.; Shi, Z. J. Am. Chem. Soc. 2015, 137, 7564−7567. (b) Liang, D.;
Yu, W.; Nguyen, N.; Deschamps, J. R.; Imler, G. H.; Li, Y.; MacKerell,
A. D., Jr.; Jiang, C.; Xue, F. J. Org. Chem. 2017, 82, 3589−3596.
E
Org. Lett. XXXX, XXX, XXX−XXX