The Journal of Organic Chemistry
Note
(12) Kreevoy, M. M.; Baughman, E. H. J. Phys. Chem. 1974, 78, 421.
(13) Rate constants for the background hydrolysis of HPNP are
available from a previous investigation, kbg = 10pH‑7.20 from ref 6. From
ASSOCIATED CONTENT
■
S
* Supporting Information
1H and 13C NMR spectra, details of the DFT calculations, plots
of potentiometric acid−base titrations, and a typical kinetic run.
This material is available free of charge via the Internet at
this equation we calculate kbg = 0.95 × 10−7 s−1 at pH 10.16 and kbg
=
1.60 × 10−7 s−1 at pH 10.39. These values show that in the given pH
range background contributions to the liberation of p-nitrophenol are
2 to 3 orders of magnitude lower than catalytic rates.
(14) As noted by a reviewer, the acceleration effect of alkyl
substituents is somewhat larger than actually measured, because the
basicity of the guanidine moiety acting as a general base decreases in
the order 1 > 2 > 3. Combination of ΔpK1 values of hydrochlorides of
AUTHOR INFORMATION
Corresponding Author
Notes
■
2 and 3 relative to 1 (Table 1) with Bronsted slope of 0.7 for this
̈
reaction (ref 5) leads to corrected krel values of 6.3 and 16.0 for 2 and
3, respectively.
The authors declare no competing financial interest.
(15) The small differences between the two sets of values arise from
the fact that the experiments on which k2 values are based were carried
out at pH values at which the mole fractions of the monoprotonated
forms of the catalysts are maximal but still slightly lower than unity in
all cases.
(16) Beesley, R. M.; Ingold, C. K.; Thorpe, J. F. J. Chem. Soc., Trans.
1915, 107, 1080.
(17) Hammond, G. S. In Steric Effects in Organic Chemistry; Newman,
M. S., Ed.; John Wiley & Sons: New York, 1956.
ACKNOWLEDGMENTS
■
PRIN/MIUR 2008 and ATENEO La Sapienza 2010 are
acknowledged for financial support.
REFERENCES
■
(1) Supramolecular Catalysis; van Leeuwen, P. W. N. M., Ed.; Wiley-
VCH Verlag GmbH & Co. KgaA: Weinheim, Germany, 2008.
(2) Kumagai, N.; Shibasaki, M. Catal. Sci. Technol. 2013, 3, 41.
(3) (a) Molenveld, P.; Engbersen, J. F. J.; Reinhoudt, D. N. Chem.
Soc. Rev. 2000, 29, 75. (b) Morrow, J. R.; Iranzo, O. Curr. Opin. Chem.
Biol. 2004, 8, 192. (c) Cacciapaglia, R.; Casnati, A.; Mandolini, L.;
Reinhoudt, D. N.; Salvio, R.; Sartori, A.; Ungaro, R. J. Org. Chem.
2005, 70, 624. (d) Mancin, F.; Scrimin, P.; Tecilla, P.; Tonellato, U.
(18) Allinger, N. L.; Zalkow, V. J. Org. Chem. 1960, 25, 701.
(19) In addition to the entropy effect, a favorable enthalpy effect of
alkyl substituents may arise from a lower number of gauche
interactions in alkyl-substituted ring compounds compared to their
open chain precursors (see ref 18). However, these enthalpy effects are
irrelevant to the present work, for the obvious reason that no gauche
interactions are present in catalysts 1−3.
Chem. Commun. 2005, 2540. (e) Niittymaki, T.; Lonnberg, H. Org.
̈
̈
(20) The fact that ΔS⧧ data in Table 3 do not show the large and
negative values expected for bimolecular reactions is no surprise. It is
well known that for reactions between ions of unlike charge there is a
large and positive contribution to ΔS⧧ arising from release of some
frozen solvent molecules on going from reactants to transition state.
For a thorough discussion of reactions between ions, see: Frost, A. A.,
Pearson, R. G. Kinetics and Mechanism, 2nd ed.; John Wiley & Sons:
New York, 1961; Chapter 7.
Biomol. Chem. 2006, 4, 15. (f) Cacciapaglia, R.; Casnati, A.; Mandolini,
L.; Reinhoudt, D. N.; Salvio, R.; Sartori, A.; Ungaro, R. J. Am. Chem.
Soc. 2006, 128, 12322. (g) Scarso, A.; Zaupa, G.; Houillon, F. B.; Prins,
L. J.; Scrimin, P. J. Org. Chem. 2007, 72, 376. (h) Cacciapaglia, R.;
Casnati, A.; Mandolini, L.; Peracchi, A.; Reinhoudt, D. N.; Salvio, R.;
Sartori, A.; Ungaro, R. J. Am. Chem. Soc. 2007, 129, 12512. (i) Tseng,
T.-S. A.; Burstyn, J. N. Chem. Commun. 2008, 6209. (j) Bonomi, R.;
Selvestrel, F.; Lombardo, V.; Sissi, C.; Polizzi, S.; Mancin, F.;
Tonellato, U.; Scrimin, P. J. Am. Chem. Soc. 2008, 130, 15744.
(k) Bazzicalupi, C.; Bencini, A.; Bonaccini, C.; Giorgi, C.; Gratteri, P.;
Moro, S.; Palumbo, M.; Simionato, A.; Sgrignani, J.; Sissi, C.;
Valtancoli, B. Inorg. Chem. 2008, 47, 5473. (l) Nwe, K.; Andolina, C.
M.; Morrow, J. R. J. Am. Chem. Soc. 2008, 130, 14861. (m) Katada, H.;
Komiyama, M. ChemBioChem 2009, 10, 1279. (n) Mohamed, M. F.;
Brown, R. S. J. Org. Chem. 2010, 75, 8471. (o) Salvio, R.; Cacciapaglia,
R.; Mandolini, L. J. Org. Chem. 2011, 76, 5438.
(21) Frisch, M. J.; et al. GAUSSIAN-03, revision D.02; Gaussian, Inc.:
Pittsburgh, PA, 2003.
(22) Cacciapaglia, R.; Di Stefano, S.; Mandolini, L. Acc. Chem. Res.
2004, 37, 113.
(23) Brown, D. M.; Usher, D. A. J. Chem. Soc. 1965, 6558.
(24) Dardonville, C.; Goya, P.; Rozas, I.; Alsasua, A.; Martín, I.;
Borrego, M. J. Bioorg. Med. Chem. 2000, 8, 1567.
(25) Alderighi, L.; Gans, P.; Ienco, A.; Peters, D.; Sabatini, A.; Vacca,
A. Coord. Chem. Rev. 1999, 184, 311.
(26) (a) Pitzer, K. S.; Gwinn, W. D. J. Chem. Phys. 1942, 10, 428.
(b) Pitzer, K. S. J. Chem. Phys. 1946, 14, 239. (c) Kilpatrick, J. E.;
Pitzer, K. S. J. Chem. Phys. 1949, 17, 1064.
(4) (a) Piatek, A. M.; Gray, M.; Anslyn, E. V. J. Am. Chem. Soc. 2004,
126, 9878. (b) Scheffer, U.; Strick, A.; Ludwig, V.; Peter, S.; Kalden, E.;
Gobel, M. W. J. Am. Chem. Soc. 2005, 127, 2211. (c) Gnaccarini, C.;
̈
Peter, S.; Scheffer, U.; Vonhoff, S.; Klussmann, S.; Gobel, M. W. J. Am.
̈
Chem. Soc. 2006, 128, 8063. (d) Lindgren, N. J. V.; Lars Geiger, J. R.;
Schmuck, C.; Baltzer, L. Angew. Chem., Int. Ed. 2009, 48, 6722.
(e) Thomas, J. M.; Yoon, J.-K.; Perrin, D. M. J. Am. Chem. Soc. 2009,
131, 5648. (f) Hollenstein, M.; Hipolito, C. J.; Lam, C. H.; Perrin, D.
M. ChemBioChem 2009, 10, 1988. (g) Lonnberg, H. Org. Biomol.
̈
Chem. 2011, 9, 1687.
(5) Corona-Martinez, D. O.; Taran, O.; Yatsimirsky, A. K. Org.
Biomol. Chem. 2010, 8, 873.
(6) Baldini, L.; Cacciapaglia, R.; Casnati, A.; Mandolini, L.; Salvio, R.;
Sansone, F.; Ungaro, R. J. Org. Chem. 2012, 77, 3381.
(7) Eliel, E. L.; Wilen, S. H. Stereochemistry of Organic Compounds;
John Wiley & Sons, Inc.: New York, 1994; Chapter 11.
(8) Jung, M. E.; Piizzi, G. Chem. Rev. 2005, 105, 1735.
(9) Yi, M. H.; Huang, W.; Jin, M. Y.; Choi, K.-Y. Macromolecules
1997, 30, 5606.
(10) Yi, M. H.; Huang, W.; Lee, B. J.; Choi, K.-Y. J. Polym. Sci., Part
A: Polym. Chem. 1999, 37, 3449.
(11) Salvio, R.; Casnati, A.; Mandolini, L.; Sansone, F.; Ungaro, R.
Org. Biomol. Chem. 2012, 10, 8941.
E
dx.doi.org/10.1021/jo401085z | J. Org. Chem. XXXX, XXX, XXX−XXX