ChemComm
Communication
Notes and references
1 (a) S. J. Rowan, S. J. Santrill, G. R. L. Cousins, J. K. M. Sanders and J. F.
Stoddart, Angew. Chem., Int. Ed., 2002, 41, 898; (b) P. T. Corbett, J. Leclaire,
L. Vial, K. R. West, J.-L. Wietor, J. K. M. Sanders and S. Otto, Chem. Rev.,
2006, 106, 3652; (c) M. Mastalerz, Angew. Chem., Int. Ed., 2012, 49, 5042.
2 For recent reviews of the use of boronic acids in dynamic self-assembly,
see: (a) N. Fujita, S. Shinkai and T. D. James, Chem.–Asian. J., 2008,
3, 1076; (b) K. Severin, Dalton Trans., 2009, 5254; (c) R. Nishiyabu,
Y. Kubo, T. D. James and J. S. Fossey, Chem. Commun., 2011, 47, 1124;
(d) S. D. Bull, M. G. Davidson, J. M. van den Elsen, J. S. Fossey, A. T. A.
Jenkins, Y.-B. Jiang, Y. Kubo, F. Marken, K. Sakurai, J. Zhao and
T. D. James, Acc. Chem. Res., 2013, 46, 312.
3 (a) X. Feng, X. Ding and D. Jiang, Chem. Soc. Rev., 2012, 41, 6010;
(b) S.-Y. Ding and W. Wang, Chem. Soc. Rev., 2013, 42, 548.
4 (a) S. S. Han, H. Furukawa, O. M. Yaghi and W. A. Goddard, J. Am. Chem.
Soc., 2008, 130, 11580; (b) H. Furukawa and O. M. Yaghi, J. Am. Chem. Soc.,
2009, 131, 8875; (c) S. Wan, J. Guo, J. Kim, H. Ihee and D. Jaing, Angew.
Chem., Int. Ed., 2009, 48, 5439; (d)E.L.SpitlerandW.R.Dichtel,Nat. Chem.,
2010, 2, 672; (e) X. Ding, L. Chen, Y. Honsho, X. Feng, O. Saenpawang,
J. Guo, A. Saeki, S. Seki, S. Irle, S. Nagase, V. Parasuk and D. Jaing, J. Am.
Chem. Soc., 2011, 133, 14510; ( f ) J. W. Colson, A. R. Woll, A. Mukherjee,
M. P. Levendorf, E. L. Spitler, V. B. Shields, M. G. Spencer, J. Park and
W. R. Dichtel, Science, 2011, 332, 228; (g) S.-Y. Ding, J. Gao, Q. Wang,
Y. Zhang, W.-G. Song, C.-Y. Su and W. Wang, J. Am. Chem. Soc., 2011,
133, 19816; (h) X. Feng, L. Lui, Y. Honsho, A. Saeki, S. Seki, S. Irle, Y. Dong,
A. Nagai and D. Jaing, Angew. Chem., Int. Ed., 2012, 51, 2618.
ˆ ´
5 A. P. Cote, A. I. Benin, N. W. Ockwig, M. O’Keeffe, A. J. Matzger and
O. M. Yaghi, Science, 2005, 310, 5751.
6 For example discrete boronate ester cages and capsules see:
(a) K. Kataoka, T. D. James and Y. Kubo, J. Am. Chem. Soc., 2007,
129, 15126; (b) N. Nishimura and K. Kobayashi, Angew. Chem., Int. Ed.,
2008, 47, 6255; (c) K. Kataoka, S. Okuyama, T. Minami, T. D. James
and Y. Kubo, Chem. Commun., 2009, 1682; (d) N. Nishimura, K. Yoza
and K. Kobayashi, J. Am. Chem. Soc., 2010, 132, 777.
7 For examples of related discrete assemblies formed from boronic acids
using (i) a combination of boronate ester and imine bond formation:
(a) N. Christinat, R. Scopelliti and K. Severin, Angew. Chem., Int. Ed., 2008,
Fig. 3 (a) Top views of the highest-occupied and lowest-unoccupied molecular
orbitals of boronate ester rectangles 3 and 4 computed at the B3LYP/6-31+g(d,p) level
(CHCl3 solvent) along with computed HOMO–LUMO gaps (eV). (b) Edge views of both
rectangles highlighting the non-planar structure of 3 and planar structure of 4.
¨
120, 1874; (b) B. Icli, N. Christinat, J. Tohnemann, C. Schuttler,
R. Scopelliti and K. Severin, J. Am. Chem. Soc., 2009, 131, 3154; (ii) by
boroxine anhydride formation: (c) Y. Tokunaga, T. Ito, H. Sugawara and
R. Nakata, Tetrahedron Lett., 2008, 49, 3449; (d) T.-H. Chen,
on their more electron-rich catechol-based units. Their LUMO orbi-
tals, however, differ considerably. The LUMO of 3 is entirely localized
on its central, electron-poor boronate moieties. The LUMO of 4 is fully
delocalized across the entire p-conjugated rectangle. Increased con-
jugation is also reflected in calculated HOMO–LUMO gaps of 4.29 and
3.52 eV for rectangles 3 and 4, respectively.
´
W. Kaveevivitchai, N. Bui and O. S. Miljanic, Chem. Commun., 2012,
48, 2855; and (iii) with iminoboronate bonds: (e) V. Barba, E. Gallegos,
´
R. Santillan and N. Farfan, J. Organomet. Chem., 2001, 622, 259;
´
¨
´
( f ) M. Sanchez, H. Hopfl, M. E. Oshoa, N. Farfan, R. Santillan and
S. Rojas-Lima, Chem.–Eur. J., 2002, 8, 612; (g) N. Christinat, R. Scopelliti
and K. Severin, Chem. Commun., 2004, 1158; (h) V. Barba and I. Betanzos,
J. Organomet. Chem., 2007, 692, 4903; (i) M. Hutin, G. Bernardinelli and
J. R. Nitschke, Chem.–Eur. J., 2008, 14, 4585; ( j) N. Christinat, R. Scopelliti
and K. Severin, Chem. Commun., 2008, 3660.
Soluble, shape-persistent covalent organic polygons bearing alkyl
functionalities are likely to allow for the design and fabrication of
new boronate ester materials – e.g. porous boronate ester mesogens,
the organized assembly of covalent organic polygons into self-
assembled monolayers, and the use of soluble covalent organic
polygons as sensors for halide anions. The violet-blue emission of
rectangles 3 and 4 opens possibilities for these and related assem-
blies to be used as soluble, thermally robust20 components of
OLEDs. Furthermore, we anticipate soluble COPs will play an
important role in understanding and optimizing structure–function
relationships of related COFs by providing valuable solution phase
analysis that cannot otherwise be easily obtained given the insoluble
nature of rigid, infinitely periodic frameworks. We are actively
investigating the solution phase assembly and sensing applications
of rectangles 3 and 4 as well as the synthesis and self-assembly of
additional soluble, discrete covalent organic polygons.
8 S. Leininger, B. Olenyuk and P. J. Stang, Chem. Rev., 2000, 100, 853.
9 W. Niu, M. D. Smith and J. J. Lavigne, J. Am. Chem. Soc., 2006,
128, 16466.
10 This drying step was found to be essential as the dynamic equili-
brium formation of rectangles 3 or 4 stalls around 90–95% conver-
sion (by 1H NMR) in the presence of residual H2O or methanol.
11 Alkylation of the pores of COFs has been shown to increase their
hydrolytic stability, see L. M. Lanni, R. W. Tilford, M. Bharathy and
J. J. Lavigne, J. Am. Chem. Soc., 2011, 133, 13975, however ortho
substitution of the catechol moieties may also be a contributing
factor. We are currently investigating this further.
12 B. M. Rambo and J. J. Lavigne, Chem. Mater., 2007, 19, 3732.
13 Assignments of vibrational modes were supported by frequency
analysis obtained from DFT calculations, see ESI,† Fig. S2, S3 and S7.
14 For UV/Vis and fluorescence data for 1, 2, and BDBA see the ESI†.
15 W. Niu, B. Rambo, M. D. Smith and J. J. Lavigne, Chem. Commun.,
2005, 5166. Note: absorption spectra reported by Niu et al. were
collected in CH2Cl2 rather than CHCl3.
Acknowledgement is made to the donors of The American
16 H. Sasabe and J. Kido, Chem. Matter., 2011, 43, 621.
Chemical Society Petroleum Research Fund for support of this 17 A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
18 M. Cossi, V. Barone, R. Cammi and J. Tomasi, Chem. Phys. Lett.,
research through a research grant to B.H.N. We thank Wesleyan
University for computer time supported by the NSF under grant
number CNS-0619508.
1996, 255, 327.
19 M. J. Frisch, et al., Gaussian 09, Revision A.1, (see ESI† for the full reference).
20 Melting points of boronate rectangles 3 and 4 are both >200 1C.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 6167--6169 6169