10.1002/anie.202006943
Angewandte Chemie International Edition
RESEARCH ARTICLE
Conclusion
Keywords: • Substituent effects • Noncovalent interactions •
Electrostatic interactions
In conclusion, we have used synthetic molecular balances and a
simple model reaction to quantify the importance of through-
space substituent effects on non-covalent interactions and
reaction kinetics, respectively (Figure 1). Experimentally
determined conformational equilibrium constants measured in
the molecular balances were transposed onto Hammett’s well-
known substituent constant scale (Table 1, Figure 2). The
determined Hammett constants bring to our attention both the
magnitude of the field effects, and the inadequacy of describing
substituent effects in terms of ‘electron donation’ and ‘electron
withdrawal’. For example, a 2,6-nitrophenyl group that positions
two nitro groups over a biaryl bond were found to have a net
electro-enhancing influence comparable to that of a directly
bonded OMe substituent, and contrasting with the classically
accepted electron-withdrawing nature of nitro groups (Figure 3B).
A more extreme manifestation of through-space effects was
observed with the 2,6-dimethoxylphenyl substituent, which was
found to be ~28% more electro-enhancing than a directly
bonded NEt2 group (Figure 3C, left). Remarkably, it was possible
to completely switch off the electro-enhancing behavior via a
sterically induced conformation change of the orientation of the
oxygen-lone pairs (Figure 3C, middle). Meanwhile, OH protons
pointed over the biaryl bond was found to exert a strong electro-
attenuating influence comparable to that a CF3 group (Figure 3C,
right). The switchable nature of these substituent effects
indicates these remarkable influences are manifested through
space (i.e. via electric fields) and not by through-bond electron
[1]
The Investigation of Organic Reactions and Their Mechanisms, (Ed.: H.
Maskill), Blackwell Publishing Ltd, Oxford, 2006.
[2]
[3]
C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 1991, 91, 165-195.
a) L. M. Stock, J. Chem. Educ. 1972, 49, 400; b) C. G. Derick, J. Am.
Chem. Soc. 1911, 33, 1162-1167; c) C. G. Derick, J. Am. Chem. Soc.
1911, 33, 1167-1181; d) C. G. Derick, J. Am. Chem. Soc. 1911, 33,
1181-1189.
[4]
[5]
a) L. P. Hammett, Chem. Rev. 1935, 16, 125-136; b) L. P. Hammett, J.
Am. Chem. Soc. 1937, 59, 96-103; c) L. P. Hammett, Trans. Faraday
Soc. 1938, 34, 156-165.
a) C. H. Suresh, P. Alexander, K. P. Vijayalakshmi, Saj, Phys. Chem.
Chem. Phys. 2008, 10, 6492-6499; b) C. G. Swain, S. H. Unger, N. R.
Rosenquist, M. S. Swain, J. Am. Chem. Soc. 1983, 105, 492-502; c) F.
B. Sayyed, C. H. Suresh, Tetrahedron Lett. 2009, 50, 7351-7354; d) C.
B. Santiago, A. Milo, M. S. Sigman, J. Am. Chem. Soc. 2016, 138,
13424-13430.
[6]
[7]
a) F. B. Sayyed, C. H. Suresh, G. S. R., J. Phys. Chem. A 2010, 114,
12330-12333; b) O. Exner, Z. Friedl, in Progress in Physical Organic
Chemistry, Vol. 19 (Ed.: R. W. Taft Jr), John Wiley & Sons, 1993, pp.
259-294.
a) J. D. Roberts, W. T. Moreland Jr, J. Am. Chem. Soc. 1953, 75, 2167
- 2173; b) H. C. Brown, Y. Okamoto, J. Am. Chem. Soc. 1958, 80,
4979-4987; c) H. H. Jaffé, Chem. Rev. 1953, 53, 191-261.
M. Charton, in Progress in Physical Organic Chemistry, Vol. 13 (Ed.: R.
W. Taft), John Wiley & Sons, 1981, pp. 119-251.
[8]
[9]
a) O. Exner, M. Charton, V. Galkin, J. Phys. Org. Chem. 1999, 12, 289-
289; b) C. G. Swain, E. C. Lupton Jr, J. Am. Chem. Soc. 1968, 90,
4328-4337; c) C. F. Wilcox, C. Leung, J. Am. Chem. Soc. 1968, 90,
336-341.
[10] a) F. H. Westheimer, J. G. Kirkwood, J. Chem. Phys. 1938, 6, 513-517;
b) J. G. Kirkwood, F. H. Westheimer, J. Chem. Phys. 1938, 6, 506-512.
[11] a) C. L. Liotta, W. F. Fisher, G. H. Greene, B. L. Joyner, J. Am. Chem.
Soc. 1972, 94, 4891-4897; b) E. J. Grubbs, R. Fitzgerald, R. E. Phillips,
R. Petty, Tetrahedron 1971, 27, 935-944; c) R. Golden, L. M. Stock, J.
Am. Chem. Soc. 1972, 94, 3080-3088; d) S. Acevedo, K. Bowden, J.
Chem. Soc., Chem. Commun. 1977, 608-609.
donation or withdrawal.
A total of 267 substituent/solvent
combinations were determined for 25 molecular balances in
eleven different solvents to examine the context dependency of
through-space substituent effects (Table 1). As anticipated, polar
solvent were found to attenuate the magnitude of substituent
effects projected through space (Figures 4 and 5). Nonetheless,
the same substituent effects that governed the conformations of
the molecular balances were also found to govern the N-
methylation kinetics of correspondingly substituted pyridine
derivatives (Figure 6). Even though the substituents examined
were all neutral and uncharged, the through-space kinetic
influences were still large enough to be manifested in the polar
solvent acetone. Conformational equilibrium constants
measured in several solvents correlated better with the
experimental rate data than electrostatic potentials calculated in
the gas phase. This suggests that the data compiled in Table 1
may prove useful for rationalizing through-space substituent
effects in other contexts and chemical reactions. Similarly, the
simplicity of the model system combined with the high energetic
precision of the conformational equilibrium constants measured
across a range of solvents (equivalent of ±0.2 kJ mol−1) may also
prove useful for benchmarking emerging theoretical solvation
models.
[12] a) C.-T. Chen, J. S. Siegel, J. Am. Chem. Soc. 1994, 116, 5959-5960;
b) J. S. Padial, R. de Gelder, C. Fonseca Guerra, F. M. Bickelhaupt, J.
Mecinović, Chem. Eur. J. 2014, 20, 6268-6271; c) V. Bosmans, J.
Poater, R. Hammink, P. Tinnemans, F. M. Bickelhaupt, J. Mecinović, J.
Org. Chem. 2019, 84, 3632-3637; d) J. Simó Padial, J. Poater, D. T.
Nguyen, P. Tinnemans, F. M. Bickelhaupt, J. Mecinović, J. Org. Chem.
2017, 82, 9418-9424.
[13] a) R. D. Topsom, J. Am. Chem. Soc. 1981, 103, 39-44; b) S. Marriott, R.
D. Topsom, J. Am. Chem. Soc. 1984, 106, 7-10; c) S. Marriott, R. D.
Topsom, J. Chem. Soc., Perkin Trans. 2 1985, 697-698.
[14] a) S. E. Wheeler, K. N. Houk, J. Am. Chem. Soc. 2008, 130, 10854-
10855; b) S. E. Wheeler, K. N. Houk, J. Chem. Theory Comput. 2009, 5,
2301 - 2312; c) S. E. Wheeler, Acc. Chem. Res. 2013, 46, 1029-1038;
d) S. E. Wheeler, J. W. G. Bloom, J. Phys. Chem. A 2014, 118, 6133-
6147; e) F. B. Sayyed, C. H. Suresh, J. Phys. Chem. A 2011, 115,
5660-5664.
[15] a) F. Cozzi, M. Cinquini, R. Annunziata, T. Dwyer, J. S. Siegel, J. Am.
Chem. Soc. 1992, 114, 5729-5733; b) F. Cozzi, M. Cinquini, R.
Annuziata, J. S. Siegel, J. Am. Chem. Soc. 1993, 115, 5330-5331; c) F.
Cozzi, F. Ponzini, R. Annunziata, M. Cinquini, J. S. Siegel, Angew.
Chem. 2017, 129, 11405-11410; Angew. Chem. Int. Ed. 1995, 34,
1019-1020; d) C. A. Hunter, J. K. M. Sanders, J. Am. Chem. Soc. 1990,
112, 5525-5534; e) R. M. Parrish, C. D. Sherrill, J. Am. Chem. Soc.
2014, 136, 17386-17389.
Acknowledgements
We thank the EPSRC (RJB, IKM, KM EP/H021620/1), the
Leverhulme Trust (Philip Leverhulme Prize, SLC) and Pfizer Ltd
for funding (CA).
[16] a) A. Warshel, Acc. Chem. Res. 1981, 14, 284-290; b) A. Warshel, P. K.
Sharma, M. Kato, Xiang, Chem. Rev. 2006, 106, 3210-3235; c) S.
Shaik, D. Mandal, R. Ramanan, Nat. Chem. 2016, 8, 1091-1098; d) S.
D. Fried, S. G. Boxer, Ann. Rev. Biochem. 2017, 86, 387-415.
7
This article is protected by copyright. All rights reserved.