ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Total Synthesis and Biological Activity
of Natural Product Urukthapelstatin A
Chun-Chieh Lin,‡ Worawan Tantisantisom,† and Shelli R. McAlpine*,†
School of Chemistry, University of New South Wales, Kensington, NSW 2052 Australia,
and Department of Chemistry and Biochemistry, 5500 Campanile Drive, San Diego State
University, San Diego, California 92182-1030, United States
Received May 18, 2013
ABSTRACT
Herein we report the first total synthesis of the natural product Urkuthaplestatin A (Ustat A) utilizing a convergent synthetic strategy. The char-
acterization and biological activity match those of the previously published natural product. Interestingly, several intermediates, including the
linear and serine cyclized precursors, show a 100-fold decrease in cytotoxicity, with IC50’s in the low micromolar range. These data indicate that
the rigidity and the consecutive aromatic heterocyclic system are responsible for the biological activity.
Reports on oxazole and thiazole containing natural
products have stimulated interest in this class of molecules
for decades.1 A large number of these natural products
come from marine creatures, and they possess promis-
ing biological activity,2 with many becoming drug candi-
dates.3 A series of biologically relevant compounds that
contain a mixture of oxazole and thiazoles within their
backbone include merchercharmycin A (IB-01211), ascidia-
cyclamide, patellamide D, and telomestatin (Figure 1). These
four compounds have all shown significant anticancer
activity. Merchercharmycin A shows an average IC50 =
43 nM4 against multiple cancer cell lines, while ascidiacy-
clamide has an average of 29 μM.5,6 Patellamide D is
clinically used in combination with vinblastine,7 and telo-
mestatin is currently in clinical trials (average GI50
=
5 nM).8,9 These four molecules resemble the structure of
a novel natural product, urukthapelstatin A (Ustat A),
which contains a sequential series of heterocycles. Impor-
tantly, Ustat A has an IC50 value of 15.5 nM10 (average
over 39cancercells). Despite its highly cytotoxic properties,
and the similarity to current biologically active drugs,
‡ San Diego State University.
† University of New South Wales.
(4) Romero, P.; Malet, L.; Canedo, L. M.; Cuevas, C.; Fernando
Reyes, J. WO 2005/000880 A2, 2005.
(5) Kanoh, K.; Matsuo, Y.; Adachi, K.; Imagawa, H.; Nishizawa,
M.; Shizuri, Y. J. Antibiot. 2005, 58, 289–292.
(6) Ishida, T.; Inoue, M.; Hamada, Y.; Kato, S.; Shioiri, T. J. Chem.
Soc., Chem. Commun. 1987, 370–371.
(7) Asano, A.; Minoura, K.; Yamada, T.; Numata, A.; Ishida, T.;
Doi, M.; Katsuya, Y.; Mezaki, Y.; Sasaki, M.; Taniguchi, T.; Nakai, M.;
Hasegawa, H.; Terashima, A. J. Pept. Res. 2002, 60, 10–22.
(8) Williams, A. B.; Jacobs, R. S. Cancer Lett. 1993, 71, 97–102.
(9) Miyazaki, T.; Pan, Y.; Joshi, K.; Purohit, D.; Hu, B.; Demir, H.;
Mazumder, S.; Okabe, S.; Yamori, T.; Viapiano, M. S.; Shin-ya, K.;
Seimiya, H.; Nakano, I. Clin. Cancer Res. 2012, 18, 1268–1280.
(10) (a) Matsuo, Y.; Kanoh, K.; Imanaka, H.; Adachi, K.; Nishizawa,
M.; Shizuri, Y. J. Antibiot. 2007, 60, 256–260. (b) Matsuo, Y.; Kanoh, K.;
Yamori, T.; Kasai, H.; Katsuta, A.; Adachi, K.; Shin-ya, K.; Shizuri, Y.
J. Antibiot. 2007, 60, 251–255.
(1) (a) Sinha Roy, R.; M. Gehring, A.; C. Milne, J.; J. Belshaw, P.; T.
Walsh, C. Nat. Prod. Rep. 1999, 16, 249–263. (b) Jin, Z. Nat. Prod. Rep.
2003, 20, 584–605. (c) Blunt, J. W.; Copp, B. R.; Munro, M. H. G.;
Northcote, P. T.; Prinsep, M. R. Nat. Prod. Rep. 2005, 22, 15–61. (d) Jin,
Z. Nat. Prod. Rep. 2011, 28, 1143–1191. (e) Jian, X.-H.; Pan, H.-X.;
Ning, T.-T.; Shi, Y.-Y.; Chen, Y.-S.; Li, Y.; Zeng, X.-W.; Xu, J.; Tang,
G.-L. ACS Chem. Biol. 2012, 7, 646–651. (f) Birkett, S. L.; Loits, D. A.;
Wimala, S.; Rizzacasa, M. A. Pure Appl. Chem. 2012, 84, 1421–1433. (g)
Walsh, C. T.; Malcolmson, S. J.; Young, T. S. ACS Chem. Biol. 2012, 7,
429–442.
(2) Davyt, D.; Serra, G. Mar. Drugs 2010, 8, 2755–2780.
(3) (a) Irschik, H.; Reichenbach, H.; Hofle, G.; Jansen, R. J. Antibiot.
2007, 60, 733–738. (b) Riego, E.; Hernandez, D.; Albericio, F.; Alvarez,
M. Synthesis 2005, 1907. (c) Riego, E.; Hernandez, D.; Albericio, F.;
Alvarez, M. Synthesis 2005, 1922. (d) Ying, Y.; Taori, K.; Kim, H.;
ꢀ
ꢀ
ꢀ
ꢀ
Hong, J.; Luesch, H. J. Am. Chem. Soc. 2008, 130, 8455–8459.
r
10.1021/ol401412v
XXXX American Chemical Society