10.1002/anie.201809398
Angewandte Chemie International Edition
penalty of hybridization which, in turn, has been attributed to the dehydration of Hg(II) on formation
of a Hg(II)-mediated base pair.[18]
Folding of the dimercurated triplexes to the expected pyrimidine•purine*pyrimidine
secondary structure was verified by CD spectropolarimetric analysis. The measurements were carried
out at 5 °C intervals over a temperature range of 10 – 90 °C under otherwise the same conditions as
those used for the UV melting experiments. At 10 °C, the spectra of ON2a•ON1f-Hg2*ON2a,
ON2c•ON1f-Hg2*ON2c
and
ON2t•ON1f-Hg2*ON2t
were
characteristic
of
pyrimidine•purine*pyrimidine triple helices,[19] with minima at 248 nm and maxima at 260 and 284
nm (spectra presented in the Supporting Information). As could be expected, folding into a triplex was
most evident with ON2t•ON1f-Hg2*ON2t. The spectra of ON2g•ON1f-Hg2*ON2g and ON2s•ON1f-
Hg2*ON2s, in turn, resembled that of a B-type double helix. In all cases, diminution of the minima and
maxima on increasing temperature was observed, consistent with thermal denaturation.
In summary, formation of stable dinuclear Hg(II)-mediated base triples between 2,6-
dimercuriphenol and adenine, cytosine and thymine (or uracil) has been demonstrated in solution as
well as within a triple-helical oligonucleotide. In the latter case, increases of more than 10 °C in both
Hoogsteen and Watson-Crick melting temperatures and a good selectivity for thymine were observed.
This novel binding mode could be used for targeting certain pathogenic nucleic acids, such as the viral
PAN RNA, as well for construction of new types of metalated DNA nanostructures.
Acknowledgements: We thank the Academy of Finland (decision #286478) and the Finnish National
Agency for Education (decision #TM-17-10348) for financial support of this work.
References
[1]
P. Scharf, J. Müller, ChemPlusChem 2013, 78, 20-34; Y. Takezawa, M. Shionoya, Acc. Chem.
Res. 2012, 45, 2066-2076; G. H. Clever, C. Kaul, T. Carell, Angew. Chem. Int. Ed. 2007, 46,
6226-6236; G. H. Clever, M. Shionoya, Coord. Chem. Rev. 2010, 254, 2391-2402; J. Müller,
Nature 2006, 444, 698-698; J. Müller, Eur. J. Inorg. Chem. 2008, 2008, 3749-3763; S. Mandal,
J. Müller, Curr. Opin. Chem. Biol. 2017, 37, 71-79; Y. Takezawa, J. Müller, M. Shionoya, Chem.
Lett. 2016, 46, 622-633; B. Lippert, P. J. Sanz Miguel, Acc. Chem. Res. 2016, 49, 1537-1545; S.
Taherpour, O. Golubev, T. Lönnberg, Inorg. Chim. Acta 2016, 452, 43-49; B. Jash, J. Müller,
Chem. Eur. J. 2017, 23, 17166-17178.
[2]
[3]
C. Colombier, B. Lippert, M. Leng, Nucleic Acids Res. 1996, 24, 4519-4524; K. S. Schmidt, M.
Boudvillain, A. Schwartz, G. A. van der Marel, J. H. van Boom, J. Reedijk, B. Lippert, Chem.
Eur. J. 2002, 8, 5566-5570; M. K. Graham, T. R. Brown, P. S. Miller, Biochemistry 2015, 54,
2270-2282; R. Manchanda, S. U. Dunham, S. J. Lippard, J. Am. Chem. Soc. 1996, 118, 5144-
5145; D. Cech, J. Schliepe, U. Berghoff, B. Lippert, Angew. Chem. Int. Ed. 1996, 35, 646-648.
M. Hibino, Y. Aiba, Y. Watanabe, O. Shoji, ChemBioChem 2018, 0; J. C. Verheijen, G. A. van
der Marel, J. H. van Boom, N. Metzler-Nolte, Bioconjugate Chem. 2000, 11, 741-743; S. Le
Gac, M. Foucart, P. Gerbaux, E. Defrancq, C. Moucheron, A. Kirsch - De Mesmaeker, Dalton
Trans. 2010, 39, 9672-9683; M. Röthlingshöfer, K. Gorska, N. Winssinger, Org. Lett. 2012, 14,
482-485; T. Joshi, G. J. Barbante, P. S. Francis, C. F. Hogan, A. M. Bond, G. Gasser, L. Spiccia,
Inorg. Chem. 2012, 51, 3302-3315.
[4]
[5]
[6]
D. Ukale, V. S. Shinde, T. Lönnberg, Chem. Eur. J. 2016, 22, 7917-7923.
D. U. Ukale, T. Lönnberg, ChemBioChem 2018, 19, 1096-1101.
S. K. Maity, T. Lönnberg, Chem. Eur. J. 2018, 24, 1274-1277; M. Hande, S. Maity, T. Lönnberg,
Int. J. Mol. Sci. 2018, 19, 1588.
This article is protected by copyright. All rights reserved.