Organic Letters
Letter
Scheme 4. Synthetic Applications Utilizing syn- and anti-1a
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
Support by the National Science Foundation (CHE-1362964)
is greatly acknowledged.
■
REFERENCES
■
(1) For recent reviews on the vinylogous (Mukaiyama) aldol
reaction, see: (a) Denmark, S. E.; Heemstra, J. R., Jr.; Beutner, G. L.
Angew. Chem., Int. Ed. 2005, 44, 4682. (b) Casiraghi, G.; Battistini, L.;
Curti, C.; Rassu, G.; Zanardi, F. Chem. Rev. 2011, 111, 3076.
(c) Casiraghi, G.; Zanardi, F.; Appendino, G.; Rassu, G. Chem. Rev.
2000, 100, 1929. (d) Kalesse, M.; Cordes, M.; Symkenberg, G.; Lu, H.-
H. Nat. Prod. Rep. 2014, 31, 563. (e) Pansare, S. V.; Paul, E. K. Chem. -
Eur. J. 2011, 17, 8770. (f) Hosokawa, S. Tetrahedron Lett. 2018, 59, 77.
For direct vinylogous aldol reactions, see: (g) Saito, S.; Shiozawa, M.;
Yamamoto, H. Angew. Chem., Int. Ed. 1999, 38, 1769. (h) Gazaille, J.
A.; Sammakia, T. Org. Lett. 2012, 14, 2678. (i) Takikawa, H.; Ishihara,
K.; Saito, S.; Yamamoto, H. Synlett 2004, 732.
(2) For representative examples of asymmetric vinylogous aldol
reactions of dienols and dienolates derived from α,β-unsaturated
carbonyl compounds, see: (a) Fu, K.; Zheng, J.; Lin, L.; Liu, L.; Feng,
X. Chem. Commun. 2015, 51, 3106. (b) Denmark, S. E.; Heemstra, J.
R., Jr. J. Am. Chem. Soc. 2006, 128, 1038. (c) Simsek, S.; Horzella, M.;
Kalesse, M. Org. Lett. 2007, 9, 5637. (d) Denmark, S. E.; Heemstra, J.
R., Jr. J. Org. Chem. 2007, 72, 5668. (e) Denmark, S. E.; Beutner, G. L.
J. Am. Chem. Soc. 2003, 125, 7800. (f) Simsek, S.; Kalesse, M.
Tetrahedron Lett. 2009, 50, 3485. (g) Wang, G.; Zhao, J.; Zhou, Y.;
Wang, B.; Qu, J. J. Org. Chem. 2010, 75, 5326. (h) Wang, G.; Wang, B.;
Qi, S.; Zhao, J.; Zhou, Y.; Qu, J. Org. Lett. 2012, 14, 2734.
(i) Heumann, L. V.; Keck, G. E. Org. Lett. 2007, 9, 4275. (j) Bluet, G.;
Campagne, J.-M. Tetrahedron Lett. 1999, 40, 5507. (k) Bluet, G.;
Campagne, J.-M. J. Org. Chem. 2001, 66, 4293. (l) Bazan-Tejeda, B.;
Bluet, G.; Broustal, G.; Campagne, J. M. Chem. - Eur. J. 2006, 12, 8358.
(m) Remy, P.; Langner, M.; Bolm, C. Org. Lett. 2006, 8, 1209.
(n) Frings, M.; Goedert, D.; Bolm, C. Chem. Commun. 2010, 46, 5497.
(3) For representative examples of asymmetric vinylogous aldol
reactions of β-ketoester-derived dienols and dienolates, see: (a) Singer,
Euscapholide (ent-syn-11) has shown anti-inflammatory activi-
ty20a and is the core structure of many natural products with
interesting biological activities, such as anticancer, antibacterial,
and antigerminating.20 A 2-OCR reaction between nonracemic
aldehyde with a stereocenter 3R-9 and anti-1a in the presence
of BF3·OEt2 at −25 °C initially gave rise to Z-syn-10, which was
isolable. Upon treating with TMSOTf and raising the
temperature, Z-syn-10 spontaneously cyclized into syn-11 with
concomitant deprotection of the TBDPS group.21 On the other
hand, an application of the same reaction sequence to 3S-9
delivered anti-11 in one-pot operation; the intermediate Z-anti-
10 was also isolable.21 These results indicate that the
stereochemistry of the above OCR reactions is entirely
controlled by the chirality of the synthon anti-1a, overcoming
the stereochemical bias by the existing C3 chiral center of 9.
In summary, new chiral synthons for the asymmetric
vinylogous aldolation of aldehydes have been devised and
prepared from commercially available compounds through two
easy catalytic reactions. Contrary to other vinylogous aldol
reactions, the synthons operate through the 2-oxonia-Cope
rearrangement mechanism, and for the first time, enable the at-
will control of both enantioselectivity and Z/E-selectivity
without the regioselectivity concern. Exceptional chirality
transfer, operational simplicity, ready availability, and air-
stability of the developed synthons should warrant their wide
applications in organic synthesis.
R. A.; Carreira, E. M. J. Am. Chem. Soc. 1995, 117, 12360. (b) Kruger,
̈
J.; Carreira, E. M. J. Am. Chem. Soc. 1998, 120, 837. (c) Kim, Y.;
Singer, R. A.; Carreira, E. M. Angew. Chem., Int. Ed. 1998, 37, 1261.
(d) Pagenkopf, B. L.; Kruger, J.; Stojanovic, A.; Carreira, E. M. Angew.
̈
Chem., Int. Ed. 1998, 37, 3124. (e) Evans, D. A.; Murry, J. A.;
Kozlowski, M. C. J. Am. Chem. Soc. 1996, 118, 5814. (f) Evans, D. A.;
Kozlowski, M. C.; Murry, J. A.; Burgey, C. S.; Campos, K. R.; Connell,
B. T.; Staples, R. J. J. Am. Chem. Soc. 1999, 121, 669. (g) Denmark, S.
E.; Beutner, G. L.; Wynn, T.; Eastgate, M. D. J. Am. Chem. Soc. 2005,
127, 3774. (h) Gondi, V. B.; Gravel, M.; Rawal, V. H. Org. Lett. 2005,
7, 5657. (i) Yoshinari, T.; Ohmori, K.; Suzuki, K. Chem. Lett. 2010, 39,
1042. (j) Sato, M.; Sunami, S.; Sugita, Y.; Kaneko, C. Chem. Pharm.
Bull. 1994, 42, 839.
ASSOCIATED CONTENT
(4) For related asymmetric bis- and hypervinylogous aldol reactions,
see: (a) Denmark, S. E.; Kobayashi, T.; Regens, C. S. Tetrahedron
2010, 66, 4745. (b) Ratjen, L.; Garcia-Garcia, P.; Lay, F.; Beck, M. E.;
List, B. Angew. Chem., Int. Ed. 2011, 50, 754. (c) Fu, K.; Zhang, J.; Lin,
L.; Li, J.; Liu, X.; Feng, X. Org. Lett. 2017, 19, 332. (d) Curti, C.;
Battistini, L.; Sartori, A.; Lodola, A.; Mor, M.; Rassu, G.; Pelosi, G.;
Zanardi, F.; Casiraghi, G. Org. Lett. 2011, 13, 4738. (e) Curti, C.;
Sartori, A.; Battistini, L.; Brindani, N.; Rassu, G.; Pelosi, G.; Lodola, A.;
Mor, M.; Casiraghi, G.; Zanardi, F. Chem. - Eur. J. 2015, 21, 6433.
■
S
* Supporting Information
The Supporting Information is available free of charge on the
Procedures, characterization data, HPLC chromato-
1
grams, and H/13C NMR spectra (PDF)
D
Org. Lett. XXXX, XXX, XXX−XXX