Journal of the American Chemical Society
Page 12 of 14
1
2
3
pCp-oPPV-C60•- radical ion pair states, which leads to an
overall increase in stability of the charge separated
state. This nicely complies with the results from recent
work with pCp-oPPV bridges, where we have shown
that, when assuming that hole transport dominates
charge transport in π-conjugated molecular wires, a
lack of delocalization across the pCp linkers will
certainly preclude strong electronic communication
between the electron donor and acceptor.
(6) Kuciauskas, D.; Liddell, P. A.; Lin, S.; Johnson, T. E.;
Weghorn, S. J.; Lindsey, J. S.; Moore, A. L.; Moore, T. A.; Gust, D.
J. Am. Chem. Soc. 1999, 121, 8604.
(7) (a) Guldi, D. M. Chem. Soc. Rev. 2002, 31, 22. (b) Drain,
C. M.; Varotto, A.; Radivojevic, I. Chem. Rev. 2009, 109, 1630.
(c) Holten, D.; Bocian, D. F.; Lindsey, J. S. Acc. Chem. Res. 2002,
35, 57.
(8) (a) Imahori, H.; Sakata, Y. Adv. Mater. 1997, 9, 537. (b)
Echegoyen, L.; Echegoyen, L. E. Acc. Chem. Res. 1998, 31, 593.
(c) Guldi, D. M. Chem. Commun. 2000, 5, 321. (d) Prato, M.;
Guldi, D. M. Acc. Chem. Res. 2000, 33, 695–703. (e) Echegoyen,
L.; Diederich, F.; Echegoyen, L. E. in Fullerenes: Chemistry,
Physics, and Technology; Kadish, K. M. and Ruoff, R. S. ed.;
Wiley-IEEE, 2000; p.20.
(9) (a) Ikemoto, J.; Takimiya, K.; Aso, Y.; Otsubo, T.;
Fujitsuka, M.; Ito, O. Org. Lett. 2002, 4, 309. (b) Vail, S. A.;
Krawczuk, P. J.; Guldi, D. M.; Palkar, A.; Echegoyen, L.; Tome, J.
P. C.; Fazio, M. A.; Schuster, D. I. Chem. Eur. J. 2005, 11, 3375.
(c) MacMahon, S.; Fong II, R.; Baran, P. S.; Safonov, I.; Wilson,
S. R.; Schuster, D. I. J. Org. Chem. 2001, 66, 5449.
(10) (a) Giacalone, F.; Segura, J. L.; Martín, N.; Guldi, D. M. J.
Am. Chem. Soc. 2004, 126, 5340. b) de la Torre, G.; Giacalone,
F.; Segura, J. L.; Martín, N.; Guldi, D. M. Chem. Eur. J. 2005, 11,
1267. (c) Atienza C.; Martin N.; Wielopolski, M.; Haworth, N.;
Clark T.; Guldi D. M. Chem. Commun 2006, 43, 3202. (d)
Atienza-Castellanos, C.; Wielopolski, M.; Guldi, D. M.; van der
Pol, C.; Bryce, M. R.; Filippone, S.; Martin, N. Chem. Commun.
2007, 43, 5164. (e) Molina-Ontoria, A.; Fernández, G.;
Wielopolski, M.; Atienza, C.; Sánchez, L.; Gouloumis, A.; Clark,
T.; Martín, N, Guldi, D. M. J. Am. Chem. Soc. 2009, 131, 12218.
(11) (a) Nitzan, A.; Ratner, M. A. Science 2003, 300, 1384.
(b) Geise, B.; Amaudrut, J.; Kohler, A. K.; Spormann, M.;
Wassely, S. Nature 2001, 412, 318. (c) Davis, W. B.; Svec, W.
A.; Ratner, M. A.; Wasielewski, M. R. Nature 1998, 396, 60. d)
Choi, S. H.; Kim, B.-S.; Frisbie, D. C. Science 2008, 320, 1482.
(12) (a) Marcus, R. A. J. Chem. Phys. 1956, 24, 966. (b)
Marcus, R. A. J. Chem. Phys. 1956, 24, 979. (c) Marcus, R. A. J.
Chem. Phys. 1957, 26, 867. (d) Marcus, R. A. J. Chem. Phys.
1957, 26, 872. (e) Marcus, R. A. Can. J. Chem. 1959, 37, 155.
(13) Molina-Ontoria, A.; Wielopolski, M.; Gebhardt, J.;
Gouloumis, A.; Clark, T.; Guldi, D. M.; Martin, N. J. Am. Chem.
Soc. 2011, 133, 2370
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ZnP excitation of 1, 2, and 3 results in a rather slow
charge transfer between ZnP and C60, at which end the
•-
ZnP•+-pCp-oPPV-C60 radical ion pair state evolves.
Notably, C60 excitation of 1, 2, and 3 leads exclusively to
a charge transfer between pCp and C60 without giving
rise to a subsequent charge shift to yield the ZnP•+-pCp-
•-
oPPV-C60
radical ion pair state. Temperature
dependent ZnP singlet excited state decays, that is,
fluorescence and transient absorption experiments,
corroborate that in the low temperature range (i.e., <
30°C) the rate constants are invariable. Here,
a
superexchange mechanism is the modus operandi.
Moreover, relating the charge separation dynamics to
the electron donor acceptor separation enabled us to
evaluate the damping factor of the pCp-oPPV bridges.
To this end, rather strong distance dependence for 1
and 2 featuring a damping factor of 0.145 Å. is followed
by weak distance dependence for 2 and 3 with a value
of 0.012 Å-1.
Acknowledgments. Financial support by MINECO of
Spain (CTQ2011-24652, PIB2010JP-00196, 2010C-07-
25200,
and
Consolider-Ingenio
CSD2007-00010),
FUNMOLS (FP7-212942-1), and CAM (MADRISOLAR-2
S2009/PPQ-1533) is acknowledged. The Deutsche
Forschungsgemeinschaft (SFB and Clusters of Excellence
Engineering of Advanced Materials), A. M. O. and A. G.,
thank the CAM, and the MEC of Spain for a research grant
and a Ramón y Cajal contract, respectively.
(14) (a) James, D. K.; Tour, J. M. Top. Curr. Chem. 2005, 257,
33. (b) Weiss, E. A.; Wasielewski, M. R.; Ratner, M. A. Top.
Curr. Chem. 2005, 257, 103. (c) Guldi, D. M.; Illescas, B. M.;
Atienza, C. M.; Wielopolski, M.; Martín, N. Chem. Soc. Rev.
2009, 38, 1587.
(15) (a) Prato, M.; Maggini, M. Acc. Chem. Res. 1998, 31,
519–526. (b) Tagmatarchis, N.; Prato, M. Synlett. 2003, 15(6),
768.
(16) Wolfrum, S.; Pinzón, J. R.; Molina-Ontoria, A.;
Gouloumis, A.; Martín, N.; Echegoyen, L.; Guldi, D. M. Chem.
Commun. 2011, 47, 2270.
(17) Stephens, P. J; Devlin, F. J; Chablowski, C. F; Frisch, M,
J. Phys. Chem. 1994, 98, 11623.
Supporting Information: Experimental procedures
with complete spectroscopic and structural analysis,
including Supporting Figures and Tables. This material is
available free of charge via the Internet at
REFERENCES
(1) (a) Cannon, R. D. Electron Transfer Reactions;
Butterworths: London, U.K., 1980. (b) Eberson, L. Electron
Transfer Reactions in Organic Chemistry; Springer: New York,
1987.
(2) Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 2001,
34, 40-48.
(3) Imahori, H. Bull. Chem. Soc. Jpn. 2007, 80, 621.
(4) Kira, A.; Umeyama, T.; Matano, Y.; Yoshida, K.; Isoda, S.;
Park, J. K.; Kim, D.; Imahori, H. J. Am. Chem. Soc. 2009, 131,
3198.
(5) Liddell, P. A.; Kuciauskas, D.; Sumida, J. P.; Nash, B.;
Nguyen, D.; Moore, A. L.; Moore, T. A.; Gust, D. J. Am. Chem.
Soc. 1997, 119, 1400.
(18) Rassolov, V. A; Pople, J. A; Ratner, M. A; Windus; T. L,
J. Chem. Phys. 1998, 109, 1223.
(19) M. J. Frisch, et al, Gaussian, Inc., Wallingford CT, 2009.
(20) 19-C60 is a model molecule used only for theoretical
calculations:
Oct
N
HexO
HexO
OHex
OHex
O
19ꢀC60
(21) Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J.
J. P. J. Am. Chem. Soc. 1985, 107, 3902.
ACS Paragon Plus Environment
12