Organic Letters
Letter
(3) Limmert, M. E.; Roy, A. H.; Hartwig, J. F. J. Org. Chem. 2005, 70,
9364.
example, from solvent NMP to give monosilylated compound 3a
in part.17
(4) (a) Correa, A.; Martin, R. J. Am. Chem. Soc. 2014, 136, 7253.
(b) Zhao, B. Synth. Commun. 2013, 43, 2110. (c) Wang, Z.-Y.; Chen, G.-
Q.; Shao, L.-X. J. Org. Chem. 2012, 77, 6608. (d) Murata, M.; Oda, T.;
Sogabe, Y.; Tone, H.; Namikoshi, T.; Watanabe, S. Chem. Lett. 2011, 40,
962.
(5) (a) Shen, C.; Yang, G.; Zhang, W. Org. Biomol. Chem. 2012, 10,
3500. (b) Fan, X.-H.; Yang, L.-M. Eur. J. Org. Chem. 2011, 2011, 1467.
(6) (a) Shi, X.; Quintero, E.; Lee, S.; Jing, L.; Herng, T. S.; Zheng, B.;
Huang, K.-W.; Lopez Navarrete, J. T.; Ding, J.; Kim, D.; Casado, J.; Chi,
C. Chem. Sci. 2016, 7, 3036. (b) Singh, V. K.; Salvatori, P.; Amat, A.;
Agrawal, S.; De Angelis, F.; Nazeeruddin, M. K.; Krishna, N. V.;
Giribabu, L. Inorg. Chim. Acta 2013, 407, 289.
Isolation of 4a enabled us to explore novel synthetic processes
(mechanism B). In NMP, 4a could be reduced by magnesium
metal to give an anion radical species (13). An anionic species
derived from 13 or 13 itself will attack chlorotrialkylsilane,
nucleophilically, or will be subjected to Michael addition to
methyl acrylate, respectively.18 Protonation after the reaction
brought about selective formation of gem-bis-silylated com-
pounds 9 and adipic acid derivatives 10 in high yields.
In conclusion, magnesium-promoted reductive silylation of
aromatic vinyl triflates 1 proceeded with no transition metal
catalyst. The reaction could be controlled by the choice of
solvent, and this result suggested that the reduction by
magnesium in THF would have a potential limit much more
positive than that in NMP. Intermediates, vinylsilanes 4, which
would be generated in the reduction in NMP were trapped and
isolated selectively in the reduction in THF. These phenomena
were utilized in the selective introduction of two different
electrophiles to the electron-deficient carbon, especially syn-
thesis of gem-bis-silylated compounds 2, 9, and 3-silyladipic acid
esters 10. Related studies are in progress.
(7) Senboku, H.; Fujimura, Y.; Kamekawa, H.; Tokuda, M. Electrochim.
Acta 2000, 45, 2995.
(8) Recent results: (a) Zhang, T.; Maekawa, H. Org. Lett. 2017, 19,
6602. (b) Maekawa, H.; Okawara, H.; Murakami, T. Tetrahedron Lett.
2017, 58, 206. (c) Zhang, T.; Zhang, Z.; Nishiyama, Y.; Maekawa, H.
Tetrahedron 2016, 72, 2293. (d) Maekawa, H.; Nishiyama, Y.
Tetrahedron 2015, 71, 6694. (e) Zhang, T.; Takano, A.; Nishiyama,
Y.; Maekawa, H. Tetrahedron 2015, 71, 2629. (f) Maekawa, H.; Takano,
A.; Watanabe, M. Tetrahedron Lett. 2014, 55, 6208. (g) Maekawa, H.;
Kudo, M.; Nishiyama, Y.; Shimizu, K.; Abe, M. Tetrahedron 2014, 70,
2081. (h) Maekawa, H.; Ozaki, T.; Zulkeflee, D.; Murakami, T.; Kihara,
S.; Nishiguchi, I. Synlett 2012, 23, 401.
(9) Silylation: (a) Kundu, P. K.; Ghosh, S. K. Tetrahedron 2010, 66,
8562. (b) Ohno, T.; Nakahiro, H.; Sanemitsu, K.; Hirashima, T.;
Nishiguchi, I. Tetrahedron Lett. 1992, 33, 5515. (c) Picard, J.-P.;
Dunogues, J.; Calas, R. J. Organomet. Chem. 1974, 77, 167. (d) Picard, J.-
P. J. Organomet. Chem. 1972, 34, 279. Acylation: (e) Ohno, T.; Sakai,
M.; Ishino, Y.; Shibata, T.; Maekawa, H.; Nishiguchi, I. Org. Lett. 2001, 3,
3439. (f) Ohno, T.; Aramaki, H.; Nakahiro, H.; Nishiguchi, I.
Tetrahedron 1996, 52, 1943. (g) Lund, H.; Degrand, C. Tetrahedron
Lett. 1977, 18, 3593. (h) Shono, T.; Nishiguchi, I.; Ohmizu, H. J. Am.
Chem. Soc. 1977, 99, 7396.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
1H and 13C NMR spectra of 1b−f, 2a−f, 3d, 3e, (Z)-4b−g,
(E)-4b−f, 5, 9b−d, and 10a−g, and 19F NMR spectra of
2d, 3d, (Z)-4d, (E)-4d, (Z)-4g, 10d, and 10g (PDF)
AUTHOR INFORMATION
■
(10) Loreto, M. A.; Pompei, F.; Tardella, P. A.; Tofani, D. Tetrahedron
1997, 53, 15853.
Corresponding Author
ORCID
(11) (a) Amii, H.; Hatamoto, Y.; Seo, M.; Uneyama, K. J. Org. Chem.
2001, 66, 7216. (b) Mae, M.; Amii, H.; Uneyama, K. Tetrahedron Lett.
2000, 41, 7893. (c) Amii, H.; Kobayashi, T.; Hatamoto, Y.; Uneyama, K.
Chem. Commun. 1999, 1323. (d) Uneyama, K.; Mizutani, G.; Maeda, K.;
Kato, T. J. Org. Chem. 1999, 64, 6717.
Notes
(12) The yield of 2a in DMF was 18%.
The authors declare no competing financial interest.
(13) It is impossible to have a precise discussion on the reduction
potential of the compounds treated in this reaction because our trial to
measure the reduction potential in THF failed, and the reduction
potentials of an organic compound in different solvents are not the same,
in general. The reduction potential in NMP has been used as a standard
to classify compounds.
ACKNOWLEDGMENTS
■
This work was supported in part by the Japan Society for the
Promotion of Science KAKENHI Grant Nos. 25410110 and
16K05768.
(14) Monosilylated compound 3a was obtained in 12−13% yield as a
byproduct in all cases.
REFERENCES
■
(15) Addition of chlorotrimethylsilane to this C−C bond formation
reaction is probably essential to activate the surface of magnesium metal
and to stabilize intermediates generated during the reaction. The typical
additives for Grignard reactions, such as iodine, iodomethane, and 1,2-
dibromoethane, were inappropriate for our magnesium-promoted
reduction.
(16) In the electron transfer reaction, formation of dianionic species is
thought to be unfavorable, and elimination of a triflate from 11 prior to
the second electron transfer is adopted in Scheme 4.7
(17) In NMP, monosilylated compound 3a may also be generated
from an anion radical species 13.
(18) Before hydrolysis, a ketene silyl acetal or a magnesium enolate
may be formed in situ.
(1) (a) Zou, Y.; Qin, L.; Ren, X.; Lu, Y.; Li, Y.; Zhou, J. Chem. - Eur. J.
2013, 19, 3504. (b) Cahiez, G.; Moyeux, A. Chem. Rev. 2010, 110, 1435.
(c) Shirakawa, E.; Imazaki, Y.; Hayashi, T. Chem. Lett. 2008, 37, 654.
(d) Shirakawa, E.; Sato, T.; Imazaki, Y.; Kimura, T.; Hayashi, T. Chem.
Commun. 2007, 43, 4513. (e) Kacprzynski, M. A.; Kazane, S. A.; May, T.
L.; Hoveyda, A. H. Org. Lett. 2007, 9, 3187. (f) Senboku, H.; Kanaya, H.;
Tokuda, M. Synlett 2002, 2002, 0140. (g) Jutand, A.; Neg
́
ri, S. Synlett
1997, 1997, 719.
(2) (a) Hsieh, J.-C.; Chu, Y.-H.; Muralirajan, K.; Cheng, C.-H. Chem.
Commun. 2017, 53, 11584. (b) Tasker, S. Z.; Gutierrez, A. C.; Jamison,
T. F. Angew. Chem., Int. Ed. 2014, 53, 1858. (c) Qin, L.; Ren, X.; Lu, Y.;
Li, Y.; Zhou, J. Angew. Chem., Int. Ed. 2012, 51, 5915. (d) Ogata, T.;
Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 13848. (e) Fristrup, P.; Le
Quement, S.; Tanner, D.; Norrby, P.-O. Organometallics 2004, 23, 6160.
(f) Olofsson, K.; Larhed, M.; Hallberg, A. J. Org. Chem. 1998, 63, 5076.
(g) Jutand, A.; Neg
́
ri, S. Eur. J. Org. Chem. 1998, 1998, 1811. (h) Jutand,
A.; Negri, S.; Mosleh, A. J. Chem. Soc., Chem. Commun. 1992, 1729.
́
D
Org. Lett. XXXX, XXX, XXX−XXX