ChemComm
Communication
(at its major emission wavelength of 547 nm) at an excitation of
D.K.M. would like to acknowledge CSIR, New Delhi, India,
440 nm, whereas the white light emitting solution shows the for financial assistance.
average fluorescence lifetime of 5.38 ns at an emission wavelength
Notes and references
of 547 nm (excited at 340 nm). The average fluorescence lifetime
of donor 1 is decreased to 0.12 ns at its emission wavelength of
425 nm in the presence of acceptor 2. So, in the white light
emitting solution, the average lifetime of acceptor 2 is increased
and consequently the average lifetime of donor 1 is decreased.
The energy transfer efficiency has been calculated from the
TCSPC life time study by using the following equation.13
1 J. Kido, M. Kimura and K. Nagai, Science, 1995, 267, 1332;
B. W. D’Andrade and S. R. Forrest, Adv. Mater., 2004, 16, 1585;
Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson and
S. R. Forrest, Nature, 2006, 440, 908; K. T. Kamtekar, A. P. Monkman
¨
and M. R. Bryce, Adv. Mater., 2010, 22, 572; M. C. Gather, A. Kohnen
and M. Meerholz, Adv. Mater., 2011, 23, 233.
2 C. Vijayakumar, V. K. Praveen and A. Ajayaghosh, Adv. Mater., 2009,
`
21, 2059; R. Abbel, R. v. d. Weegen, W. Pisula, M. Surin, P. Leclere,
R. Lazzaroni, E. W. Meijer and A. P. H. J. Schenning, Chem.–Eur. J.,
tDA
tD
E ¼ 1 ꢀ
(1)
¨
2009, 15, 9737; C. Giansante, G. Raffy, C. Schafer, H. Rahma, M.-T. Kao,
A. G. L. Olive and A. D. Guerzo, J. Am. Chem. Soc., 2011, 133, 316.
3 W. Ki, J. Li, G. Eda and M. Chhowalla, J. Mater. Chem., 2010,
20, 10676; I. O. Huyal, U. Koldemir, T. Ozel, H. V. Demir and
D. Tuncel, J. Mater. Chem., 2008, 18, 3568.
Where E is the energy transfer efficiency, tDA is the donor’s
lifetime in the presence of the acceptor and tD is the donor’s
lifetime in the absence of the acceptor. The calculation shows
that the energy transfer efficiency from donor 1 to acceptor 2 is
43%. The energy transfer efficiency has also been determined
from the overlap integral between normalized emission spectra
of donor 1 and normalized absorption spectra of acceptor 2
(Fig. S8, ESI†) by using the following equation.
`
4 R. Abbel, C. Grenier, M. J. Pouderoijen, J. W. Stouwdam, P. E. L. G. Leclere,
R. P. Sijbesma, E. W. Meijer and A. P. H. J. Schenning, J. Am. Chem. Soc.,
2009, 131, 833; M.-J. Park, J. Lee, J.-H. Park, S. K. Lee, J.-I. Lee, H.-Y. Chu,
D.-H. Hwang and H.-K. Shim, Macromolecules, 2008, 41, 3063; G. Tu,
C. Mei, Q. Zhou, Y. Cheng, Y. Geng, L. Wang, D. Ma, X. Jing and F. Wang,
Adv. Funct. Mater., 2006, 16, 101; J. Liu, X. Guo, L. Bu, Z. Xie, Y. Cheng,
Y. Geng, L. Wang, X. Jing and F. Wang, Adv. Funct. Mater., 2007, 17, 1917.
5 H.-M. Shih, R.-C. Wu, P.-I. Shih, C.-L. Wang and C.-S. Hsu, J. Polym.
Sci., Part A: Polym. Chem., 2012, 50, 696.
6 G. He, D. Guo, C. He, X. Zhang, X. Zhao and C. Duan, Angew. Chem.,
2009, 121, 624; R. Wang, D. Liu, R. Zhang, L. Denga and J. Li, J. Mater.
Chem., 2012, 22, 1411; T.-H. Kim, H. K. Lee, O. O. Park, B. D. Chin,
S.-H. Lee and J. K. Kim, Adv. Funct. Mater., 2006, 16, 611; P. Coppo,
M. Duati, V. N. Kozhevnikov, J. W. Hofstraat and L. D. Cola, Angew.
Chem., Int. Ed., 2005, 44, 1806; C.-L. Ho, W.-Y. Wong, Q. Wang, D. Ma,
L. Wang and Z. Lin, Adv. Funct. Mater., 2008, 18, 928; A. H. Shelton,
I. V. Sazanovich, J. A. Weinstein and M. D. Ward, Chem. Commun.,
FDA
E ¼ 1 ꢀ
(2)
FD
Where FDA is the area under fluorescence emission spectra of
donor in the presence of the acceptor and FD is the area under
fluorescence emission spectra of donor in the absence of the
acceptor. This result shows that the energy transfer efficiency is
42%. Thus, it is evident that the energy transfer efficiency
values determined by these above two methods match well
(also see Fig. S10–S12 in ESI†).
The Field Emission Scanning Electron Microscopic (FE-SEM)
study has been carried out to obtain valuable information
about the morphology of these components. Scanning electron
microscopic images of the stilbene containing peptide 1 show
that it forms straight nanofibers in ODCB solvent (Fig. S9a,
ESI†). These fibers are several micrometers in length and the
widths of the fibers are in the range of 25 nm to 30 nm. The
SEM study of the compound 2 also shows the formation
of nanofibers in ODCB solution (Fig. S9b, ESI†) and widths
of these fibers are within the range of 45 nm to 55 nm.
However, the nanofibers obtained from the white light emitting
solution are within the range of 70 nm to 80 nm width and
they are different from both of their individual components
(Fig. S9c, ESI†).
´
2012, 48, 2749; R. D. Costa, E. Ortı, H. J. Bolink, F. Monti, G. Accorsi
and N. Armaroli, Angew. Chem., Int. Ed., 2012, 51, 8178; J. Kalinowski,
V. Fattori, M. Cocchi and J. A. G. Williams, Coord. Chem. Rev., 2011,
255, 2401; D. Sykes, I. S. Tidmarsh, A. Barbieri, I. V. Sazanovich,
J. A. Weinstein and M. D. Ward, Inorg. Chem., 2011, 50, 11323.
7 L. Hou, L. Duan, J. Qiao, D. Zhang, L. Wang, Y. Caoab and Y. Qiu,
J. Mater. Chem., 2011, 21, 5312.
8 Y. Lei, Q. Liao, H. Fu and J. Yao, J. Am. Chem. Soc., 2010, 132, 1742;
Y. S. Zhao, H. Fu, F. Hu, A. Peng, W. Yang and J. Yao, Adv. Mater.,
2008, 20, 79; H. Sun, H. Zhang, J. Zhang, H. Wei, J. Ju, M. Li and
B. Yang, J. Mater. Chem., 2009, 19, 6740.
9 W. Ki and J. Li, J. Am. Chem. Soc., 2008, 130, 8114; S. Park, J. E. Kwon,
S. H. Kim, J. Seo, K. Chung, S.-Y. Park, D.-J. Jang, B. M. Medina,
J. Gierschner and S. Y. Park, J. Am. Chem. Soc., 2009, 131, 14043; Y. Liu,
M. Nishiura, Y. Wang and Z. Hou, J. Am. Chem. Soc., 2006, 128, 5592;
K. V. Rao, K. K. R. Datta, M. Eswaramoorthy and S. J. George, Adv.
Mater., 2013, 25, 1713; R. Abbel, R. van der Weegen, E. W. Meijer and
A. P. H. J. Schenning, Chem. Commun., 2009, 1697; C. Vijayakumar,
K. Sugiyasu and M. Takeuchi, Chem. Sci., 2011, 2, 291.
10 A. D. Guerzo, A. G. L. Olive, J. Reichwagen, H. Hopf and J.-P. Desvergne,
J. Am. Chem. Soc., 2005, 127, 17984; A. Ajayaghosh, V. K. Praveen and
C. Vijayakumar, Chem. Soc. Rev., 2008, 37, 109; J. Zhang, F. J. M.
Hoeben, M. J. Pouderoijen, A. P. H. J. Schenning, E. W. Meijer,
F. C. D. Schryver and S. D. Feyter, Chem.–Eur. J., 2006, 12, 9046;
A new white light emitting substance has been discovered.
It consists of two different fluorophores containing peptides
Boc-LVF-ST-OMe (1) and MeO-FVL-PDI-LVF-OMe (2), out of
which the stilbene containing peptide 1 acts as a donor and
¨
C. Hippius, I. H. M. van Stokkum, M. Gsanger, M. M. Groeneveld,
R. M. Williams and F. Wu¨rthner, J. Phys. Chem. C, 2008, 112, 2476;
S. K. Samanta and S. Bhattacharya, Chem.–Eur. J., 2012, 18, 15875.
11 R. Wang, J. Peng, F. Qiu and Y. Yang, Chem. Commun., 2011, 47, 2787;
M. Roushan, X. Zhang and J. Li, Angew. Chem., Int. Ed., 2012, 51, 436;
X. Zhang, Z. Wu, B. Jiao, D. Wang, D. Wang, X. Hou and W. Huang,
¨
the PDI containing peptide 2 acts as an acceptor in Forster
´
´
resonance energy transfer (FRET). Moreover, the emission light
can be tuned from blue to white to orange as shown by CIE
(1931) coordinates. This white light emitting solution can be
used to make white light emitting thin layers made of silica.
Such a white light emitting solution holds future promises for
the potential application as an advanced material that may be
used in solution-processed organic electronic devices.
J. Lumin., 2012, 132, 697; C. Coya, A. L. Alvarez, M. Ramos, R. Gomez,
C. Seoane and J. L. Segura, Synth. Met., 2012, 161, 2580; S. Bhattacharya
and S. K. Samanta, Chem.–Eur. J., 2012, 18, 16632; S. S. Babu, J. Aimi,
¨
H. Ozawa, N. Shirahata, A. Saeki, S. Seki, A. Ajayaghosh, H. Mohwald
and T. Nakanishi, Angew. Chem., Int. Ed., 2012, 51, 3391.
12 D. K. Maiti and A. Banerjee, Chem.–Asian J., 2013, 8, 113.
13 W. Ding, J. Wang, Z. Liu, M. Zhang, Q. Su and J. Tang, J. Electrochem. Soc.,
2008, 155, J122; P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan and
M. K. R. Warrier, J. Phys. Chem. Solids, 2003, 64, 841.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 6909--6911 6911