Inorganic Chemistry
Article
Chem. Commun. 2012, 48, 3012−3014. (c) Chatterjee, A.; Santra, M.;
Won, N.; Kim, S.; Kim, J. K.; Bin Kim, S.; Ahn, K. H. J. Am. Chem. Soc.
2009, 131, 2040. (d) Coskun, A.; Akkaya, E. U. J. Am. Chem. Soc.
2005, 127, 10464−10465. (e) Yang, R. H.; Chan, W. H.; Lee, A. W.
M.; Xia, P. F.; Zhang, H. K.; Li, K. A. J. Am. Chem. Soc. 2003, 125,
2884−2885. (f) Qin, C. J.; Wong, W. Y.; Wang, L. X. Macromolecules.
2011, 44, 483−489. (g) Bilgicli, A. T.; Gunsel, A.; Kandaz, M.; Ozkaya,
A. R. Dalton Trans. 2012, 41, 7047−7056.
(6) (a) Mandal, A.; Dandapat, A.; De, G. Analyst 2012, 137, 765−
772. (b) Gattas-Asfura, K. A.; Leblanc, R. M. Chem. Commun. 2003,
2684−2685.
(7) (a) Feng, D. Q.; Liu, G. L.; Zheng, W. J.; Liu, J.; Chen, T. F.; Li,
D. Chem. Commun. 2011, 47, 8557−8559. (b) Jagerszki, G.; Grun, A.;
Bitter, I.; Toth, K.; Gyurcsanyi, R. E. Chem. Commun. 2010, 46, 607−
609.
0.12 (log K′), respectively. The formation of the “closed
1
clamp” conformation adduct [1c·Ag+] was confirmed by H
NMR titration experiments. The receptor chelating effect of
three-armed flexible conformation and the acetylide binding
unit was determined by the control experiments toward the
acetylide free analogue 1a and single-arm analogue 2c,
respectively. The P(2-Py)Ph2 containing analogue 1d shows
similar affinity but less selectivity toward Ag+. In addition, 1c
shows the binding affinity toward F− in DMSO-d6 compared to
other anions. In the presence of Ag+, 1c shows less binding
affinity toward F−. This could be rationalized by the smaller
space in tren cavity when the “closed clamp” conformation
adduct [1c·Ag+] is formed. The study for water-soluble gold(I)
acetylide chemosensors is underway.
(8) (a) Xie, W. Y.; Huang, W. T.; Li, N. B.; Luo, H. Q. Chem.
Commun. 2012, 48, 82−84. (b) Park, K. S.; Lee, J. Y.; Park, H. G.
Chem. Commun. 2012, 48, 4549−4551. (c) Tang, C. X.; Bu, N. N.; He,
X. W.; Yin, X. B. Chem. Commun. 2011, 47, 12304−12306. (d) Zhao,
C.; Qu, K.; Song, Y.; Xu, C.; Ren, J.; Qu, X. Chem.Eur. J. 2010, 16,
8147−8154. (e) Li, T.; Shi, L. L.; Wang, E. K.; Dong, S. J. Chem.Eur.
J. 2009, 15, 3347−3350. (f) Wen, Y.; Xing, F.; He, S.; Song, S.; Wang,
L.; Long, Y.; Li, D.; Fan, C. Chem. Commun. 2010, 46, 2596−2598.
(g) Man, B. Y. W.; Chan, D. S. H.; Yang, H.; Ang, S. W.; Yang, F.; Yan,
S. C.; Ho, C. M.; Wu, P.; Che, C. M.; Leung, C. H.; Ma, D. L. Chem.
Commun. 2010, 46, 8534−8536.
(9) Zhao, Q.; Li, F.; Huang, C. Chem. Soc. Rev. 2010, 39, 3007−3030.
(10) (a) Yam, V. W. W.; Cheng, E. C. C. Chem. Soc. Rev. 2008, 37,
1806−1813. (b) Yam, V. W. W.; Cheng, E. C. C. Top. Curr. Chem.
2007, 281, 269−309. (c) Pyykko, P. Angew. Chem., Int. Ed. 2004, 43,
4412−4456.
(11) (a) Tong, G. S. M.; Kui, S. C. F.; Chao, H. Y.; Zhu, N.; Che, C.
M. Chem.Eur. J. 2009, 15, 10777−10789. (b) Che, C. M.; Lai, S. W.
Coord. Chem. Rev. 2005, 249, 1296−1309. (c) Zhang, H. X.; Che, C.
M. Chem.Eur. J. 2001, 7, 4887−4893. (d) Fu, W. F.; Chan, K. C.;
Cheung, K. K.; Che, C. M. Chem.Eur. J. 2001, 7, 4656−4664.
(e) Fu, W. F.; Chan, K. C.; Miskowski, V. M.; Che, C. M. Angew.
Chem., Int. Ed. 1999, 38, 2783−2785. (f) Yip, J. H. K.; Prabhavathy, J.
Angew. Chem., Int. Ed. 2001, 40, 2159−2162.
(12) (a) Lee, T. K. M.; Zhu, N.; Yam, V. W. W. J. Am. Chem. Soc.
2010, 132, 17646−17648. (b) Yu, S. Y.; Sun, Q. F.; Lee, T. K. M.;
Cheng, E. C. C.; Li, Y. Z.; Yam, V. W. W. Angew. Chem., Int. Ed. 2008,
47, 4551−4554. (c) Sun, Q. F.; Lee, T. K. M.; Li, P. Z.; Yao, L. Y.;
Huang, J. J.; Huang, J.; Yu, S. Y.; Li, Y. Z.; Cheng, E. C. C.; Yam, V. W.
W. Chem. Commun. 2008, 5514−5516. (d) Yu, S. Y.; Zhang, Z. X.;
Cheng, E. C. C.; Li, Y. Z.; Yam, V. W. W.; Huang, H. P.; Zhang, R. B. J.
Am. Chem. Soc. 2005, 127, 17994−17995.
(13) (a) Zhou, Y. P.; Zhang, M.; Li, Y. H.; Guan, Q. R.; Wang, F.;
Lin, Z. J.; Lam, C. K.; Feng, X. L.; Chao, H. Y. Inorg. Chem. 2012, 51,
5099−5109. (b) He, X.; Zhu, N.; Yam, V. W. W. Dalton Trans. 2011,
40, 9703−9710. (c) Hau, F. K. W.; He, X.; Lam, W. H.; Yam, V. W. W.
Chem. Commun. 2011, 47, 8778−8780. (d) He, X.; Yam, V. W. W.
Inorg. Chem. 2010, 49, 2273−2279. (e) He, X.; Herranz, F.; Cheng, E.
C. C.; Vilar, R.; Yam, V. W. W. Chem.Eur. J. 2010, 16, 9123−9131.
(f) He, X.; Lam, W. H.; Zhu, N.; Yam, V. W. W. Chem.Eur. J. 2009,
15, 8842−8851. (g) He, X.; Cheng, E. C. C.; Zhu, N.; Yam, V. W. W.
Chem. Commun. 2009, 4016−4018. (h) Li, C. K.; Lu, X. X.; Wong, K.
M. C.; Chan, C. L.; Zhu, N.; Yam, V. W. W. Inorg. Chem. 2004, 43,
7421−7430.
(14) (a) Tong, G. S. M.; Chow, P. K.; Che, C. M. Angew. Chem., Int.
Ed. 2010, 49, 9206−9209. (b) Lu, W.; Zhu, N.; Che, C. M. J.
Organomet. Chem. 2003, 670, 11−16. (c) Lu, W.; Xiang, H. F.; Zhu,
N.; Che, C. M. Organometallics. 2002, 21, 2343−2346. (d) Chao, H.
Y.; Lu, W.; Li, Y.; Chan, M. C. W.; Che, C. M.; Cheung, K. K.; Zhu, N.
J. Am. Chem. Soc. 2002, 124, 14696−14706. (e) Che, C. M.; Chao, H.
Y.; Miskowski, V. M.; Li, Y.; Cheung, K. K. J. Am. Chem. Soc. 2001,
123, 4985−4991.
ASSOCIATED CONTENT
* Supporting Information
Synthetic route of 2c; UV−vis and emission spectra of 1c and
1d; photophysical data of 1a−1d and 2a−2c; emission spectral
changes of 1d and 2c with Ag+; plots of the emission changes of
1c and 1d as a function of the concentration of Ag+ and the
theoretical 1:1 fitting curves; detection limit of 1c toward Ag+;
■
S
1
emission spectra of 1c and 1d with metal ions; H NMR
spectral changes of 1c in present of one equivalent of Ag+ with
−
F−, Cl−, Br−, I−, H2PO4 , and OAc−; 1H NMR spectral changes
of 1a, 1b, and 1d with Ag+; UV−vis spectral changes of 1d with
Ag+; a Job’s plot of 1d with Ag+; a plot of the absorbance
change of 1d as a function of the concentration of Ag+ and a
1:1 theoretical fitting curve; emission spectra of 1c in THF and
DMSO with 2 equiv of Ag+; UV−vis and emission spectral
changes of 1c with Cu+; excitation spectra of 1c with 4 equiv of
Ag+ and Cu+; emission spectral changes of 1d with Ag+; H
1
NMR spectral changes of 1c with Cl−, H2PO4 , and OAc−. This
−
material is available free of charge via the Internet at http://
AUTHOR INFORMATION
Corresponding Author
*Phone: +86-20-84110062. Fax: +86-20-84112245. E-mail:
Notes
■
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We acknowledge the financial support from the National
Natural Science Foundation of China (20971131 and
J1103305), the Natural Science Foundation of Guangdong
Province (10151027501000048 and S2012010010566), and
Sun Yat−Sen University. We thank Prof. David G. Churchill of
KAIST for his assistance in proofreading this manuscript. We
also thank the editors and reviewers for their helpful comments
and suggestions.
REFERENCES
■
(1) Valeur, B. Molecular Fluorescence: Principle and Applications;
Wiley−VCH Verlag GmbH: Weinheim, 2001.
(2) Fu, F.; Wang, Q. J. Environ. Manage. 2011, 92, 407−418.
(3) Ratte, H. T. Environ. Toxicol. Chem. 1999, 18, 89−108.
(4) Zhang, J. F.; Zhou, Y.; Yoon, J.; Kim, J. S. Chem. Soc. Rev. 2011,
40, 3416−3429.
(5) (a) Zheng, H.; Yan, M.; Fan, X. X.; Sun, D.; Yang, S. Y.; Yang, L.
J.; Li, J. D.; Jiang, Y. B. Chem. Commun. 2012, 48, 2243−2245.
(b) Kim, J. M.; Lohani, C. R.; Neupane, L. N.; Choi, Y.; Lee, K. H.
H
dx.doi.org/10.1021/ic400791a | Inorg. Chem. XXXX, XXX, XXX−XXX