ACS Catalysis
Research Article
(4) (a) Corma, A.; Juar
́
ez, R.; Boronat, M.; San
́
chez, F.; Iglesias, M.;
calculated for C11H15O3: 195.1021] found m/z 195.1014.
Triethyl benzene-1,3,5-tricarboxylate 3b: white solid (10 mg,
15%). Rf (20% AcOEt/hexane): 0.52. GC−MS (m/z, M+ 294),
major peaks found: 294 (27%), 266 (36%), 249 (100%), 238,
(24%), 221 (66%), 210 (26%), 193 (31%). IR (cm−1): 2996,
1726, 1718, 1239. 1H NMR (δ, ppm; J, Hz): 8.77 (3H, s), 4.37
(6H, q, J = 7.1), 1.36 (9H, t, J = 7.1). 13C NMR (δ, ppm):
165.0 (C × 3), 134.4 (CH × 3), 131.4 (C × 3), 61.7 (CH2 ×
3), 14.3 (CH3 × 3). HRMS (ESI) [(M + H)+; calculated for
C11H15O3: 195.1021] found m/z 195.1014.
Typical Procedure for the Oxidative Alkynylation. The
solid catalyst (5 mol % of metal respect to 2) and
trimethoxybenzene 2 (21 mg, 0.125 mmol) were placed in a
double-walled glass 2 mL reactor equipped with a magnetic
stirrer and a manometer. 1,2-Dichlorobenzene (0.5 mL) and
ethyl propiolate 1 (38.0 μL, 0.375 mmol) were added, and the
reactor was closed. Molecular oxygen (6 bar, ∼ 0.9 mmol) was
introduced at room temperature, and the resulting mixture was
magnetically stirred in a preheated oil bath at 120 °C for the
required time. Aliquots were periodically taken, poured into
CH2Cl2 (1 mL), filtered through a 0.2 μm PTFE filter syringe,
and submitted to GC and GC−MS analysis after dodecane (5.6
μL, 0.025 mmol) was added as an external standard. At the end
of the reaction, CH2Cl2 (1 mL) was added after cooling the
reactor and the mixture was stirred for a few minutes at room
temperature, solids were filtered off, and the resulting filtrates
were analyzed as the aliquots.
García, H. Chem. Commun. 2011, 47, 1446. (b) Boronat, M.; Combita,
D.; Concepcion, P.; Corma, A.; García, H.; Juaarez, R.; Laursen, S.;
Lopez-Castro, J. D. J. Phys. Chem. C 2012, 116, 24855. (c) Daniel, M.-
C.; Astruc, D. Chem. Rev. 2004, 104, 293.
(5) Grirrane, A.; Corma, A.; García, H. Science 2008, 322, 1661.
(6) Gonzalez-Arellano, C.; Abad, A.; Corma, A.; García, H.; Iglesias,
M.; Sanchez, F. Angew. Chem., Int. Ed. 2007, 46, 1536.
́
́
́
́
́
(7) Navalon, S.; Martin, R.; Alvaro, M.; Garcia, M. Angew. Chem., Int.
Ed. 2010, 49, 8403.
(8) (a) Kanuru, V. K.; Kyriakou, G.; Beaumont, S. K.; Papageorgiou,
A. C.; Watson, D. J.; Lambert, R. M. J. Am. Chem. Soc. 2010, 132,
8081. (b) Beaumont, S. K.; Kyriakou, G.; Lambert, R. M. J. Am. Chem.
Soc. 2010, 132, 12246. (c) Kyriakou, G.; Beaumont, S. K.; Humphrey,
S. M.; Antonetti, C.; Lambert, R. M. ChemCatChem 2010, 2, 1444.
(9) Herzing, A. A.; Kiely, C. J.; Carley, A. F.; Landon, P.; Hutchings,
G. J. Science 2008, 321, 1331.
(10) Hughes, M. D.; Xu, Y. J.; Jenkins, P.; McMorn, P.; Landon, P.;
Enache, D. I.; Carley, A. F.; Attard, G. A.; Hutchings, G. J.; King, F.;
Stitt, E. H.; Johnston, P.; Griffin, K.; Kiely, C. J. Nature 2005, 437,
1132.
(11) Toma, H. E.; Zamarion, V. M.; Toma, S. H.; Araki, K. J. Braz.
Chem. Soc. 2010, 21, 1158.
(12) (a) For reviews on the cyclotrimerization reaction see Shaaban,
M. R.; El-Sayed, R.; Elwahy, A. H. M. Tetrahedron 2011, 67, 6095.
(b) Kotha, S.; Brahmachary, E.; Lahiri, K. Eur. J. Org. Chem. 2005,
4741.
(13) (a) The Stratakis group has uncovered that Au−TiO2 is an
excellent catalyst for the disilylation of alkynes and isomerization of
epoxides; see: Lykakis, I. N.; Psyllaki, A.; Stratakis, M. J. Am. Chem.
Soc. 2011, 133, 10426. (b) Raptis, C.; Garcia, H.; Stratakis, M. Angew.
Chem., Int. Ed. 2009, 48, 3133.
(14) Das, A.; Dash, C.; Yousufuddin, M.; Celik, M. A.; Frenking, G.;
Dias, H. V. R. Angew. Chem., Int. Ed. 2012, 51, 3940.
(15) Sa, J.; Goguet, A.; Taylor, S. F. R.; Tiruvalam, R.; Kiely, C. J.;
́
Nachtegaal, M.; Hutchings, G. J.; Hardacre, C. Angew. Chem., Int. Ed.
2011, 50, 8912.
Hot Filtration Tests. Two parallel reaction mixtures were
followed by GC, taking aliquots periodically, under typical
reaction conditions, and one of them was filtered hot at a
determined conversion through a 0.2 μm PTFE filter. The
resulting filtrates were placed under the same conditions
(stirring and temperature) as the original reaction and also
followed by GC.
(16) (a) Corma, A.; Serna, P.; Concepcion, P.; Calvino, J. J. J. Am.
Chem. Soc. 2008, 130, 8748. (b) Boronat, M.; Concepcion
́
, P.; Corma,
ASSOCIATED CONTENT
* Supporting Information
General procedures, syntheses and characterization of catalysts,
substrates, and products, reaction procedures, additional tables
and figures, and NMR spectra of compounds. This material is
■
A.; Gonzalez, S.; Illas, F.; Serna, P. J. Am. Chem. Soc. 2007, 129, 16230.
́
S
(17) (a) Chirea, M.; Freitas, A.; Vasile, B. S.; Ghitulica, C.; Pereira, C.
M.; Silva, F. Langmuir 2011, 27, 3906. (b) Oliver-Meseguer, J.;
Cabrero-Antonino, J. R.; Domínguez, I.; Leyva-Per
Science 2012, 338, 1452.
́
ez, A.; Corma, A.
(18) Martin, R.; Menchon, C.; Apostolova, N.; Victor, V. M.; Alvaro,
M.; Herance, J. R.; Garcia, H. ACS Nano 2010, 4, 6957.
(19) (a) Reported metal catalysts for the cyclotrimerization reaction
include cobalt, rhodium, ruthenium, titanium, molybdenum, and
palladium, among others. See this and the following reference for
selected examples. These metals can perform the organometallic ring
pathway. For cobalt see: Agenet, N.; Gandon, V.; Vollhardt, K. P. C.;
Malacria, M.; Aubert, C. J. Am. Chem. Soc. 2007, 129, 8860. (b) Rhyoo,
H.-Y.; Lee, B. Y.; Yu, H. K. B.; Chung, Y. K. J. Mol. Catal. 1994, 92, 41.
(20) For rhodium see: Tanaka, K.; Toyoda, K.; Wada, A.; Shirasaka,
K.; Hirano, M. Chem.Eur. J. 2005, 11, 1145.
AUTHOR INFORMATION
Corresponding Author
+349638 77809.
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(21) For ruthenium see: Cadierno, V.; García-Garrido, S. E.; Gimeno,
J. J. Am. Chem. Soc. 2006, 128, 15094 and ref 22.
A.L.-P. thanks CSIC for a contract. J.O.-M. thanks ITQ for a
postgraduate scholarship. J.R.C.-A. and P.R.-M. thank MECD
for the concession of a FPU contract. Financial support by the
Severo Ochoa program and Consolider-Ingenio 2010 (proyecto
MULTICAT) from MICIINN is acknowledged, and also the
King Saud University. P.S. thanks European Union Seventh
Framework programme (PIOF−GA−2009−253129).
(22) Yamamoto, Y.; Arakawa, T.; Ogawa, R.; Itoh, K. J. Am. Chem.
Soc. 2003, 125, 12143.
(23) For titanium see: Ozerov, O. V.; Patrick, B. O.; Ladipo, F. T. J.
Am. Chem. Soc. 2000, 122, 6423.
(24) For molybdenum see: Ardizzoia, G. A.; Brenna, S.; LaMonica,
G.; Maspero, A.; Masciocchi, N. J. Organomet. Chem. 2002, 649, 173.
(25) For palladium see: Lin, Y.-Y.; Tsai, S.-C.; Yu, S. J. J. Org. Chem.
2008, 73, 4920 and ref 26.
(26) In the context of heterogeneous catalysis, palladium has shown
good catalytic activity; see for instance: Ormerod, R. M.; Lambert, R.
M. J. Chem. Soc., Chem. Commun. 1990, 1421. We tested commercial
Pd−carbon for the cyclotrimerization of 1 under our standard
REFERENCES
■
(1) Corma, A.; Leyva-Per
1657.
́
ez, A.; Sabater, M. J. Chem. Rev. 2011, 111,
(2) Leyva-Per
́
ez, A.; Corma, A. Angew. Chem., Int. Ed. 2012, 51, 64.
(3) Hashmi, A. S. K. Angew. Chem., Int. Ed. 2010, 49, 5232.
1872
dx.doi.org/10.1021/cs400362c | ACS Catal. 2013, 3, 1865−1873