Scheme 1. Shapiro Reactions Have Not Been Employed to
Access Fluoroalkenes
Scheme 2. Only NFSI Provided Fluoroalkene Productsa
a Yields were determined by 19F NMR analysis using R,R,R-trifluoro-
toluene as an internal standard. b The reaction of the phenyl tosylhy-
drazone substrate was explored.
alkenylstannanes,15 -silanes,16 and -boronic acid derivatives17
and metal-catalyzed coupling reactions.18 However, these
methods typically provide low diastereoselectivities
of E- and Z-isomers (<1:3 dr).19 Further, many of these
methods are not suitable for introducing the fluoroalkene
at a late stage of a synthesis through modification of
a compound already in hand. Thus, alternate strategies
to access fluoralkenes are desirable.
It was envisaged that fluoroolefins could be accessed
through a Shapiro fluorination reaction (Scheme 1).20 The
Shapiro reactionhas been widelyappliedinthe synthesis of
natural products,21 and for the preparation of polysubsti-
tuted alkenes,22 many of which are not easily accessed
by other means. A prototypical Shapiro reaction involves
(1) condensation of an N-sulfonyl hydrazide with a ketone
to provide a sulfonyl hydrazone; (2) treatment of the
sulfonyl hydrazone with a base to provide a vinyllithium
intermediate; and (3) trapping of the vinyl anion with Hþ
to afford an alkene-based product.20 Alternatively, the in
situ formed alkenyllithium intermediate can also be
trapped with a variety of electrophiles to generate allylic
alcohols, acrylic acids, acrylic aldehydes, vinylsilanes, and
vinyl iodides and bromides.23 However, the Shapiro reaction
has not been employed to access fluoroalkenes. Herein, we
describe a Shapiro fluorination reaction to provide fluoro-
alkenes in high diastereoselectivity (Scheme 1).
The Shapiro fluorination reaction was scouted using a
variety of commercially available electrophilic fluorinating
reagents24 and biphenyl 2,4,6-triisopropyl-benzenesulfo-
nyl (Tris) hydrazone (1a) as a test substrate (Scheme 2).
Tris hydrazones were employed instead of phenylsulfonyl
or mesitylsulfonyl moieties because the former group (1)
does not undergo ortho-lithiation or R-lithiation, which
allows for the reaction to proceed using fewer equivalents
of base and electrophilic trapping agent;25 (2) decomposes
more easily than unhindered arylhydrazones, a phenomenon
that likely arises from the release of steric compression at the
transition state.26 Decomposition of the Tris hydrazone was
accomplished by lithiation with 2.5 equiv of n-butyllithium
(n-BuLi) in THF from ꢀ78 to 0 °C, followed by cooling
to ꢀ78 °C for the addition of the fluorinating reagent. No
fluorinated product was observed by 19F NMR when the in
situ formed vinyl anion was reacted with N-fluoropyridinium
salts or Selectfluor. Potentially, the poor reactivity of these
reagents arose from the low solubility of the ionic reagents
in THF at low temperature. In contrast, employment of
(11) (a) Allmendinger, T. Tetrahedron 1991, 47, 4905–4914. (b)
Nakamura, Y.; Okada, M.; Koura, M. J. Fluorine Chem. 2006, 127,
627–636. (c) Huang, X. H.; He, P. Y.; Shi, G. Q. J. Org. Chem. 2000, 65,
627–629. (d) Prakash, G. K. S.; Chacko, S.; Vaghoo, H.; Shao, N.;
Gurung, L.; Mathew, T.; Olah, G. A. Org. Lett. 2009, 11, 1127–1130. (e)
Nguyen, T. H.; Abarbri, M.; Guilloteau, D.; Mavel, S.; Emond, P.
Tetrahedron 2011, 67, 3434–3439.
(12) (a) Cox, D. G.; Gurusamy, N.; Burton, D. J. J. Am. Chem. Soc.
1985, 107, 2811–2812. (b) Tsai, H. J. Tetrahedron Lett. 1996, 37, 629–
632. (c) van Steenis, J. H.; van der Gen, A. Eur. J. Org. Chem. 2001, 897–
910.
(13) (a) Lin, J.; Welch, J. T. Tetrahedron Lett. 1998, 39, 9613–9616.
(b) Asakura, N.; Usuki, Y.; Iio, H. J. Fluorine Chem. 2003, 124, 81–88.
(14) (a) Zajc, B.; Kake, S. Org. Lett. 2006, 8, 4457–4460. (b) Pfund,
E.; Lebargy, C.; Rouden, J.; Lequeux, T. J. Org. Chem. 2007, 72, 7871–
7877. (c) Ghosh, A. K.; Banerjee, S.; Sinha, S.; Kang, S. B.; Zajc, B.
J. Org. Chem. 2009, 74, 3689–3697.
(15) (a) Tius, M. A.; Kawakami, J. K. Synth. Commun. 1992, 22,
1461–1471. (b) Tius, M. A.; Kawakami, J. K. Tetrahedron 1995, 51,
3997–4010.
(16) Greedy, B.; Gourverneur, V. Chem. Commun. 2001, 233–234.
(17) (a) Petasis, N. A.; Yudin, A. K.; Zavialov, I. A.; Prakash,
G. K. S.; Olah, G. A. Synlett 1997, 606–608. (b) Furuya, T.; Ritter, T.
Org. Lett. 2009, 11, 2860–2863.
(18) (a) Gogsig, T. M.; Sobjerg, L. S.; Lindhardt, A. T.; Jensen, K. L.;
Skrydstrup, T. J. Org. Chem. 2008, 73, 3404–3410. (b) Han, S. Y.; Jeong,
I. H. Org. Lett. 2010, 12, 5518–5521. (c) Zhang, H.; Zhou, C. B.; Chen,
Q. Y.; Xiao, J. C.; Hong, R. Org. Lett. 2011, 13, 560–563. (d) Qiu, J.;
Gyorokos, A.; Tarasow, T. M.; Guiles, J. J. Org. Chem. 2008, 73, 9775–
9777.
(19) For a unique stereoselective synthesis of 1-fluoro-1-phenylalk-
enes, see: Zhang, W.; Huang, W.; Hu, J. Angew. Chem., Int. Ed. 2009, 48,
9858–9861.
(20) Chamberlin, A. R.; Bloom, S. H. Org. React. 1990, 39, 1–83.
(21) (a) Harrowven, D. C.; Pascoe, D. D.; Demurtas, D.; Bourne,
H. O. Angew. Chem., Int. Ed. 2005, 44, 1221–1222. (b) Zhu, C.; Cook,
S. P. J. Am. Chem. Soc. 2012, 134, 13577–13579. (c) Granger, K.;
Snapper, M. L. Eur. J. Org. Chem. 2012, 2308–2311.
(23) (a) Chamberlin, A. R.; Stemke, J. E.; Bond, F. T. J. Org. Chem.
1978, 43, 147–154. (b) Paquette, L. A.; Fristad, W. E.; Dime, D. S.;
Bailey, T. R. J. Org. Chem. 1980, 45, 3017–3028. (c) Mislankar, D. G.;
Mugrage, B.; Darling, S. D. Tetrahedron Lett. 1981, 22, 4619–4622. (d)
Adlington, R. M.; Barrett, A. G. M. Acc. Chem. Res. 1983, 16, 55–59. (e)
Rauniyar, V.; Zhai, H.; Hall, D. G. Synth. Commun. 2008, 38, 3984–
3995.
ꢀ ^
(24) Jerome, B.; Dominique, C. Org. React. 2007, 69, 347–672.
(25) Rosiak, A.; Hoenke, C.; Christoffers, J. Eur. J. Org. Chem. 2007,
4376–4382.
(26) Cusack, N. J.; Reese, C. B.; Risius, A. C.; Roozpeikar, B.
Tetrahedron 1976, 32, 2157–2162.
(22) (a) Corey, E. J.; Roberts, B. E. Tetrahedron Lett. 1997, 38, 8919–
8920. (b) Fabris, F.; Martin, A. D.; Lucchi, O. D. Tetrahedron Lett.
1999, 40, 9121–9124.
B
Org. Lett., Vol. XX, No. XX, XXXX