5066
G. K. Friestad et al. / Tetrahedron Letters 53 (2012) 5064–5067
Table 2
In summary, a novel silyl cation-induced ring opening of enol
ester epoxides has been discovered. This reaction may be linked
with anti-Markovnikov Ru-catalyzed addition to alkynes to open
a new and efficient access to synthetically valuable a-silyloxyalde-
hydes from readily available alkynes. Further expansion of scope is
Ring opening of enol ester poxides
O
O
TBSOTf
OCb
O
O
Ar
R
H
2,6-lutidine
CH2Cl2, rt
or
R
R
underway.
OTBS
O
7
17–21
3, 22, 23
Acknowledgments
(racemic)
(racemic)
Entry
Method
Epoxide
R
Yield, aldehyde
We thank the University of Iowa for support of this work
through the UI MPSFP program, and through a UI Faculty Scholar
Award (G.K.F.).
1
2
3
4
5
6
A
B
B
B
A
B
7
17
18
19
20
20
CH2CH2SO2PT
n-Bu
n-Bu
n-Bu
CH2CH2Ph
CH2CH2Ph
80%, 3
97%, 22
97%, 22
79%, 22
86%, 23
86%, 23
References and notes
1. Review: (a) Martelli, G.; Savoia, D. Curr. Org. Chem. 2003, 7, 1049–1070; For
example: (b) Vettel, S.; Lutz, C.; Diefenbach, A.; Haderlein, G.; Hammerschmidt,
S.; Kuhling, K.; Mofid, M. R.; Zimmermann, T.; Knochel, P. Tetrahedron:
Asymmetry 1997, 8, 779–800.
2. For examples, see: (a) Uehara, H.; Oishi, T.; Yoshikawa, K.; Mochida, K.; Hirama,
M. Tetrahedron Lett. 1999, 40, 8641–8645; (b) Iguchi, K.; Kitade, M.; Kashiwagi,
Y.; Yamada, Y. J. Org. Chem. 1993, 58, 5690–5698.
nobenzoic acid-derived enol esters 13 and 16 gave mixtures of
epoxides under these conditions.
Next, silyl cation-induced ring opening was examined by expos-
ing enol ester epoxides 17–20 to TBSOTf and 2,6-lutidine in CH2Cl2.
Initially, the reactions were attempted at room temperature (Table
2, entries 1 and 5). Though successful in some instances, this pro-
cedure proved capricious, sometimes requiring additional aliquots
of reagents to provide variable chemical yields over reaction times
of 1–2 days or more. To minimize the exposure of the product to
the reaction conditions, and thereby alleviate the potential for
product loss through decomposition pathways, microwave irradia-
tion was applied. This shortened the required reaction time to just
30 min. A comparison of substituents on the benzoate component
(entries 2–4) showed that the reaction was compatible with either
electron-donating or electron-withdrawing groups, albeit with
diminished yield in the latter case (entry 4). Comparison of micro-
wave vs non-microwave conditions for a selected example 20 (en-
tries 5 and 6) shows that the microwave may not be essential for
good yields in all cases, but it is recommended for greater
reliability.
3. Schaus, S. E.; Brandes, B. D.; Larrow, J. F.; Tokunaga, M.; Hansen, K. B.; Gould, A.
E.; Furrow, M. E.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 1307–1315.
4. (a) Zhong, G. Angew. Chem., Int. Ed. 2003, 42, 4247–4250; (b) Brown, S. P.;
Brochu, M. P.; Sinz, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2003, 125, 10808–
10809; (c) Zhong, G. Chem. Commun. 2004, 606–607; (d) Simonovich, S. P.; Van
Humbeck, J. F.; MacMillan, D. W. C. Chem. Sci. 2012, 3, 58–61.
5. For selected recent examples, see: (a) Breuning, M.; Häuser, T.; Tanzer, E.-M.
Org. Lett. 2009, 11, 4032–4035; (b) Lubin, H.; Tessier, A.; Chaume, G.;
Pytkowicz, J.; Brigaud, T. Org. Lett. 2010, 12, 1496–1499.
6. (a) Friestad, G. K.; Jiang, T.; Fioroni, G. M. Tetrahedron 2008, 64, 11549–11557;
(b) Friestad, G. K.; Mathies, A. K. Tetrahedron 2007, 63, 9373–9381; (c) Friestad,
G. K.; Jiang, T.; Mathies, A. K. Tetrahedron 2007, 63, 3964–3972; (d) Friestad, G.
K.; Jiang, T.; Mathies, A. K. Org. Lett. 2007, 9, 777–780; (e) Friestad, G. K.;
Massari, S. E. J. Org. Chem. 2004, 69, 863–875; (f) Friestad, G. K.; Jiang, T.;
Fioroni, G. M. Tetrahedron: Asymmetry 2003, 14, 2853–2856; (g) Friestad, G. K.;
Massari, S. E. Org. Lett. 2000, 2, 4237–4240; (h) Friestad, G. K. Org. Lett. 1999, 1,
1499–1501.
7. (a) Hashiyama, T.; Morikawa, K.; Sharpless, K. B. J. Org. Chem. 1992, 57, 5067–
5068; (b) Marcune, B. F.; Karady, S.; Reider, P. J.; Miller, R. A.; Biba, M.;
DiMichele, L.; Reamer, R. A. J. Org. Chem. 2003, 68, 8088–8091.
8. (a) Davis, F. A.; Sheppard, A. C.; Chen, B. C.; Haque, M. S. J. Am. Chem. Soc. 1990,
112, 6679–6690; (b) Rubottom, G. M.; Gruber, J. M.; Juve, H. D., Jr.; Charleson,
D. A. Org. Synth. 1986, 64, 118–126.
The importance of 2,6-lutidine in the success of the reaction is
worth further note. Fujioka and Kita’s interesting disclosure of a
novel pathway for non-aqueous cleavage of acetals14 may be of rel-
evance: Upon treatment with TESOTf and lutidine or collidine,
aldehyde acetals are selectively cleaved to moderately stable
pyridinium salts 24A (Scheme 2) which are aldehyde adducts of
the N,O-acetal type. In the silyl cation-induced ring opening of enol
9. Evans, P.; Leffray, M. Tetrahedron 2003, 59, 7973–7981. and references therein.
10. Russell, G. A.; Ochrymowycz, L. A. J. Org. Chem. 1969, 34, 3618–3624.
11. Hoppe, D.; Marr, F.; Bruggemann, M. In Topics in Organometallic Chemistry;
Hodgson, D. M., Ed.; Springer: Berlin, 2003; Vol. 5, pp 61–138.
12. (a) Goossen, L. J.; Paetzold, J.; Koley, D. Chem. Commun. 2003, 706–707; (b)
Doucet, H.; Höfer, J.; Bruneau, C.; Dixneuf, P. H. J. Chem. Soc., Chem. Commun.
1993, 850–851.
13. Shi, Y. Acc. Chem. Res. 2004, 37, 488–496.
14. Representative experimental procedures: (a) Enol ester preparation. The
catalyst was prepared from ((p-cymene)RuCl2)2 (8.5 mg, 0.013 mmol), tri(p-
chlorophenyl)phosphine (14.4 mg, 0.04 mmol) and DMAP (6.4 mg,
0.053 mmol) in toluene (4 mL) by heating the mixture to 60 °C for 45 min. A
solution of anisic acid (200 mg, 1.31 mmol) and 4-phenyl-1-butyne (0.24 mL,
1.71 mmol) in toluene (10 mL) was transferred by cannula into the catalyst
mixture. The reaction was heated at 60 °C for 24–48 h and then allowed to
reach room temperature, then filtered through a silica gel plug. Concentration
and radial chromatography (petroleum ether/EtOAc) afforded the Z-enol ester
15 (298 mg, 80.4% yield). IR (film) 2934, 2840, 1726, 1606, 1511 1496, 1454,
1317, 1166 cmÀ1;1H NMR (300 MHz, CDCl3) d 8.03 (d, J = 9.0 Hz, 2H), 7.31–7.16
(m, 6H), 6.94 (d, J = 9.0 Hz, 2H), 4.86 (dd, J = 12.3, 1.5 Hz, 1H), 3.88 (s, 3H), 2.86
(dd, J = 8.4, 7.2 Hz, 2H), 2.68–2.63 (m, 2H); 13C NMR (75 MHz, CDCl3) d 164.72,
163.87, 141.08, 132.24, 128.57, 126.25, 122.21, 113.90, 102.18, 55.68, 35.46,
33.17; HRMS (ES) Calcd. for C18H18O3 ([M]+): 282.1256, Found: 282.1248. (b)
Epoxidation of enol esters. To a solution of Z-enol ester 11 (125 mg, 0.534 mmol)
in acetone (2 mL) were added water (4 mL), acetone (4 mL), and sodium
bicarbonate (2.7 g, 60 equiv) at –10 °C (ice–salt mixture). Oxone (3.3 g,
10 equiv) was added to the reaction in portions. After 24 h, the reaction
mixture was diluted with water and extracted with EtOAc (60 mL).
Concentration and radial chromatography (petroleum ether/EtOAc) afforded
the desired epoxide 18 (120 mg, 90.3%). IR (film) 2958, 2932, 1727, 1606, 1512,
ether epoxides,
a similar role may be speculated for the
2,6-lutidine, which could trap an oxocarbenium ion generated
upon ring opening to form intermediate 24B and avoid destructive
side reactions.
Fujioka–Kita Reaction (2006)
OMe
+
N
OMe
OMe
OMe
OR'
TBSOTf
R'OH
R
R
R
2,6-lutidine
mixed acetal
24A
Possible Role of 2,6-Lutidine in Ring Opening of Enol Ester Epoxides
O
acyl
O
O
O
O
o-Tol
+
N
H2O
R
R
1462, 1257, 1105 cmÀ1 1H NMR (300 MHz, CDCl3) d 7.99 (d, J = 9.0 Hz, 2H),
;
H
R
6.93 (d, J = 9.0 Hz, 2H), 5.77 (d, J = 2.7 Hz, 1H), 3.87 (s, 3H), 3.08 (ddd, J = 6.3,
6.3, 2.7 Hz, 1H), 1.87–1.69 (m, 2H), 1.63–1.36 (m, 4H), 0.96–0.91 (m, 3H); 13C
NMR (75 MHz, CDCl3) d 166.06, 164.18, 132.15, 121.63, 114.04, 76.57, 57.01,
TBSO
TBSO
24B
55.69, 28.40, 26.94, 22.67, 14.17; HRMS (ES) Calcd. for
250.1205, Found: 250.1206. (c) Epoxide ring-opening. To a solution of epoxide
C
14H18O4 ([M]+):
Scheme 2. Mechanistic considerations in enol ester epoxide ring-opening.