Journal of the American Chemical Society
Communication
Fu, Y.; Xie, M.; Liu, L.; Guo, Q.-X. J. Org. Chem. 2007, 72, 8025.
(h) Yuan, X.; Liu, K.; Li, C. J. Org. Chem. 2008, 73, 6166.
In summary, we have developed an organocatalytic photo-
redox-based approach to the asymmetric α-amination of
aldehydes via the direct coupling of functionalized nitrogen
and formyl precursors. This operationally facile process provides
ready access to complex N-substituted α-amino aldehydes and at
the same time offers a useful alternative to standard π-electron
addition approaches to carbonyl α-amination. Moreover, to the
best of our knowledge, this disclosure marks the first
demonstration of the use of N-based radicals as viable reagents
in a catalytic enantioselective transformation. We anticipate that
this α-amination method will prove widely useful in the synthesis
of complex target structures bearing chiral amine fragments.
(9) (a) Luring, U.; Kirsch, A. Chem. Ber. 1993, 126, 1171. (b) Tsuritani,
̈
T.; Shinokubo, H.; Oshima, K. Org. Lett. 2001, 3, 2709. (c) Kemper, J.;
Studer, A. Angew. Chem., Int. Ed. 2005, 44, 4914. (d) Guin, J.; Muck-
Lichtenfeld, C.; Grimme, S.; Studer, A. J. Am. Chem. Soc. 2007, 129,
4498. (e) Guin, J.; Frohlich, R.; Studer, A. Angew. Chem., Int. Ed. 2008,
47, 779.
(10) For synthesis details and UV−vis spectra of the amine reagents,
see sections XI and XII in the Supporting Information (SI).
(11) The transformation did not undergo propagation upon removal
of the light source, implicating a photon-induced electron transfer event.
Moreover, generation of the N-centered radical required the presence of
the electron-rich enamine (Table 1, entry 3). More specifically, UV−vis
analysis of the radical precursor and the catalytically activated enamine
(generated separately and concurrently) clearly showed that dispro-
portionation of a charge transfer complex is not the mechanism for
carbamyl radical production (Scheme 1). Lastly, we determined that N−
O bond homolysis of 3 does not occur in the absence of an SET event.
(12) We chose to optimize this transformation using a household light
source in lieu of the slightly more efficient LZC system to allow
operational convenience for practitioners of this chemistry.
(13) The enamine concentration during the reaction was evaluated by
1H NMR analysis of the crude reaction mixture performed in CD3CN/
DMSO-d6.
ASSOCIATED CONTENT
■
S
* Supporting Information
Procedures, spectral data, and complete ref 16. This material is
AUTHOR INFORMATION
Corresponding Author
■
Notes
(14) 1H NMR analysis of the crude reaction mixture showed decreased
levels of MeNHCO2Me (10−15%) for couplings performed at −15 °C.
MeNHCO2Me can be formed from the corresponding radical by either
H-atom abstraction from the solvent or SET reduction to the amine
anion followed by protonation from the medium.
(15) For the synthesis of 11, see sections IV and V in the SI.
(16) DFT calculations were performed at the B3LYP/6-31G* level as
implemented in Gaussian 03: Frisch, M. J.; et al. Gaussian 03, revision
C.02; Gaussian, Inc.: Wallingford, CT, 2004.
(17) For NMR studies, see section IX in the SI.
(18) These amine reagents can be stored in the presence of moisture or
light at ambient temperatures without decomposition.
(19) (a) Sieber, S. A.; Marahiel, M. A. Chem. Rev. 2005, 105, 715.
(b) Vlieghe, P.; Lisowski, V.; Martinez, J.; Khrestchatisky, M. Drug
Discovery Today 2010, 15, 40.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support was provided by the NIGMS (R01 GM-
093213-03) and kind gifts from Merck, Amgen, and AbbVie.
G.C. is grateful for a Merck Overseas Postdoctoral Fellowship.
C.M.K. thanks the German Academic Exchange Service
(DAAD) for a postdoctoral fellowship. The authors thank E.
Mosconi for assistance in performing DFT calculations and C.
Kraml and N. Byrne (Lotus Separations, LLC) for their
development of preparatory supercritical-fluid chromatography
methods and gram-scale separation of the enantiomers of 11.
(20) (a) Yu, J.; Butelman, E. R.; Woods, J. H.; Chait, B. T.; Kreek, M. J.
J. Pharm. Exp. Ther. 1997, 280, 1147. (b) Harris, K. S.; Casey, J. L.;
Coley, A. M.; Karas, J. A.; Sabo, J. K.; Tan, Y. Y.; Dolezal, O.; Norton, R.
S.; Hughes, A. B.; Scanlon, D.; Foley, M. J. Biol. Chem. 2009, 284, 9361.
(c) Tulla-Puche, J.; Marcucci, E.; Prats-Alfonso, E.; Bayol-Puxan, N. R.;
Albericio, F. J. Med. Chem. 2009, 52, 834.
(21) (a) Teixido, M.; Zurita, E.; Malakoutikhah, M.; Tarrago, T.;
Giralt, E. J. Am. Chem. Soc. 2007, 129, 11802. (b) Biron, E.; Chatterjee,
J.; Ovadia, O.; Langenegger, D.; Brueggen, J.; Hoyer, D.; Schmid, H. A.;
Jelinek, R.; Gilon, C.; Hoffman, A.; Kessler, H. Angew. Chem., Int. Ed.
2008, 47, 2595.
(22) (a) Ron, D.; Gilon, C.; Hanani, M.; Vromen, A.; Selinger, Z.;
Chorev, M. J. Med. Chem. 1992, 35, 2806. (b) Dechantsreiter, M. A.;
Planker, E.; Matha, B.; Taylor, J. E.; Coy, D. H. J. Med. Chem. 2001, 44,
1305. (c) Chatterjee, J.; Ovadia, O.; Zahn, G.; Marinelli, L.; Hoffman, A.;
Gilon, C.; Kessler, H. J. Med. Chem. 2007, 50, 5878.
REFERENCES
■
(1) Hili, R.; Yudin, A. K. Nat. Chem. Biol. 2006, 2, 284.
(2) (a) Modern Amination Methods; Ricci, A., Ed.; Wiley-VCH:
Weinheim, Germany, 2000. (b) Amino Group Chemistry: From Synthesis
to the Life Sciences; Ricci, A., Ed.; Wiley-VCH: Weinheim, Germany,
2008. (c) Williams, R. M. Synthesis of Optically Active α-Amino Acids;
Pergamon: Oxford, U.K., 1989.
(3) For examples of N-protected α-amino aldehydes as chiral building
blocks, see: (a) Reetz, M. T. Angew. Chem., Int. Ed. Engl. 1991, 30, 1531.
(b) Reetz, M. T. Chem. Rev. 1999, 99, 1121. (c) Gryko, D.; Chalko, J.;
Jurczak, J. Chirality 2003, 15, 514.
(4) (a) Bogevig, A.; Juhl, K.; Kumaragurubaran, N.; Zhuang, W.;
Jørgensen, K. A. Angew. Chem., Int. Ed. 2002, 41, 1790. (b) List, B. J. Am.
Chem. Soc. 2002, 124, 5656. (c) Konishi, H.; Lam, T. Y.; Malerich, J. P.;
Rawal, V. H. Org. Lett. 2010, 12, 2028.
(5) (a) Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77.
(b) Nagib, D. A.; Scott, M. E.; MacMillan, D. W. C. J. Am. Chem. Soc.
2009, 131, 10875. (c) Shih, H.-W.; Vander Wal, M. N.; Grange, R. L.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 13600.
(6) Lorance, E. D.; Kramer, W. H.; Gould, I. R. J. Am. Chem. Soc. 2002,
124, 15225.
(7) Wayner, D. D. M.; Dannenberg, J. J.; Griller, D. Chem. Phys. Lett.
1986, 131, 189.
(8) (a) Zard, S. Z. Chem. Soc. Rev. 2008, 37, 1603. (b) Esker, J. L.;
Newcomb, M. J. Org. Chem. 1993, 58, 4933. (c) Horner, J. H.; Musa, O.
M.; Bouvier, A.; Newcomb, M. J. Am. Chem. Soc. 1998, 120, 7738.
(d) Gagosz, F.; Moutrille, C.; Zard, S. Z. Org. Lett. 2002, 4, 2707.
(e) Baumgartner, M. T.; Foray, S. G. J. Mol. Struct. 2003, 633, 7. (f) Liu,
F.; Liu, K.; Yuan, X.; Li, C. J. Org. Chem. 2007, 72, 10231. (g) Yu, Y.-Y.;
D
dx.doi.org/10.1021/ja406181e | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX