ARTICLES
analysis and the estimation of solvent effects, the 6-311G(d,p) polarized triple-z
basis set was used, and additional single-point energy calculations were carried out
for each located stationary point with the larger 6-311þþG(3df,3pd) basis set. The
energy values reported in the paper correspond to solution-phase Gibbs free
energies. Additional computational details are provided in the Supplementary
Information (Computational Protocol).
27. Van Laren, M. W. & Elsevier, C. J. Selective homogeneous palladium(0)-
catalyzed hydrogenation of alkynes to (Z)-alkenes. Angew. Chem. Int. Ed. 38,
3715–3717 (1999).
28. Radkowski, K., Sundararaju, B. & Fu¨rstner, A. A functional-group-tolerant
catalytic trans hydrogenation of alkynes. Angew. Chem. Int. Ed. 52,
355–360 (2013).
29. Parks, D. J., von H. Spence, R. E. & Piers, W. E. Bis(pentafluorophenyl)borane:
synthesis, properties, and hydroboration chemistry of a highly electrophilic
borane reagent. Angew. Chem. Int. Ed. 34, 809–811 (1995).
30. Parks, D. J., Piers, W. E. & Yap, G. P. A. Synthesis, properties, and hydroboration
activity of the highly electrophilic borane bis(pentafluorophenyl)borane,
HB(C6F5)2. Organometallics 17, 5492–5503 (1998).
31. Parks, D. & Piers, W. Hydroboration of vinyl silanes with bis-(pentafluoro-
phenyl)borane: ground state b-silicon effects. Tetrahedron 54,
15469–15488 (1998).
32. Jiang, C., Blacque, O. & Berke, H. Metal-free hydrogen activation by the
frustrated Lewis pairs of ClB(C6F5)2 and HB(C6F5)2 and bulky Lewis bases.
Organometallics 28, 5233–5239 (2009).
33. Jiang, C., Blacque, O., Fox, T. & Berke, H. Reversible, metal-free hydrogen
activation by frustrated Lewis pairs. Dalton Trans. 40, 1091–1097 (2011).
34. Chernichenko, K., Nieger, M., Leskela¨, M. & Repo, T. Hydrogen activation by
2-boryl-N,N-dialkylanilines: a revision of Piers’ ansa-aminoborane. Dalton
Trans. 41, 9029–9032 (2012).
Received 22 February 2013; accepted 13 May 2013;
published online 7 July 2013
References
1. Welch, G. C., San Juan, R. R., Masuda, J. D. & Stephan, D. W. Reversible, metal-
free hydrogen activation. Science 314, 1124–1126 (2006).
2. Stephan, D. W. ‘Frustrated Lewis pairs’: a concept for new reactivity and
catalysis. Org. Biomol. Chem. 6, 1535–1539 (2008).
3. Stephan, D. W. & Erker, G. Frustrated Lewis pairs: metal-free hydrogen
activation and more. Angew. Chem. Int. Ed. 49, 46–76 (2010).
4. Stephan, D. W. et al. Metal-free catalytic hydrogenation of polar substrates by
frustrated Lewis pairs. Inorg. Chem. 50, 12338–12348 (2011).
5. Stephan, D. W. ‘Frustrated Lewis pair’ hydrogenations. Org. Biomol. Chem. 10,
5740–5746 (2012).
6. Sumerin, V. et al. Highly active metal-free catalysts for hydrogenation of
unsaturated nitrogen-containing compounds. Adv. Synth. Catal. 353,
2093–2110 (2011).
7. Eros, G. et al. Expanding the scope of metal-free catalytic hydrogenation through
frustrated Lewis pair design. Angew. Chem. Int. Ed. 49, 6559–6563 (2010).
8. Xu, B-H. et al. Reaction of frustrated Lewis pairs with conjugated ynones-
selective hydrogenation of the carbon–carbon triple bond. Angew. Chem. Int. Ed.
50, 7183–7186 (2011).
9. Mahdi, T., Heiden, Z. M., Grimme, S. & Stephan, D. W. Metal-free aromatic
hydrogenation: aniline to cyclohexyl-amine derivatives. J. Am. Chem. Soc.
134, 4088–4091 (2012).
35. Chase, P. A. & Stephan, D. W. Hydrogen and amine activation by a frustrated
Lewis pair of a bulky N-heterocyclic carbene and B(C6F5)3. Angew. Chem. Int.
Ed. 47, 7433–7437 (2008).
36. Robertson, A. P. M. et al. Experimental and theoretical studies of the potential
.
interconversion of the amine-borane iPr2NH BH(C6F5)2 and the aminoborane
iPr2N¼B(C6F5)2 involving hydrogen loss and uptake. Eur. J. Inorg. Chem. 2011,
5279–5287 (2011).
37. Erdmann, M. et al. Functional group chemistry at intramolecular frustrated
Lewis pairs: substituent exchange at the Lewis acid site with 9-BBN. Dalton
Trans. 42, 709–718, (2013).
10. Greb, L. et al. Metal-free catalytic olefin hydrogenation: low-temperature H2
activation by frustrated Lewis pairs. Angew. Chem. In. Ed. 51,
10164–10168 (2012).
11. Ko¨ster, R. Neue pra¨parative Mo¨glichkeiten in der Bor- und Silicium-Chemie.
Angew. Chem. 68, 383 (1956).
38. Brown, H. C. Hydroboration (W. A. Benjamin, 1962).
´
39. Rokob, T. A., Hamza, A. & Papai, I. Rationalizing the reactivity of frustrated
Lewis pairs: thermodynamics of H2 activation and the role of acid–base
properties. J. Am. Chem. Soc. 131, 10701–10710 (2009).
40. Dureen, M. A., Brown, C. C. & Stephan, D. W. Deprotonation and addition
reactions of frustrated Lewis pairs with alkynes. Organometallics 29,
6594–6607 (2010).
41. Dureen, M. A. & Stephan, D. W. Terminal alkyne activation by frustrated and
classical Lewis acid/phosphine pairs. J. Am. Chem. Soc. 131, 8396–8397 (2009).
42. Jiang, C., Blacque, O. & Berke, H. Activation of terminal alkynes by frustrated
Lewis pairs. Organometallics 29, 125–133 (2010).
43. Moemming, C. M. et al. Formation of cyclic allenes and cumulenes by
cooperative addition of frustrated Lewis pairs to conjugated enynes and diynes.
Angew. Chem. Int. Ed. 49, 2414–2417 (2010).
44. Voss, T. et al. Frustrated Lewis pair behavior of intermolecular amine/B(C6F5)3
pairs. Organometallics 31, 2367–2378 (2012).
45. Winkelhaus, D., Neumann, B., Stammler, H-G. & Mitzel, N. W. Intramolecular
Lewis acid–base pairs based on 4-ethynyl-2,6-lutidine. Dalton Trans. 41,
9143–9150 (2012).
12. Ko¨ster, R., Bruno, G. & Binger, P. Borverbindungen, V Hydrierung von
Bortrialkylen und -triarylen. Justus Liebigs Ann. Chem. 644, 1–22 (1961).
13. DeWitt, E. J., Ramp, F. L. & Trapasso, L. E. Homogeneous hydrogenation
catalyzed by boranes. J. Am. Chem. Soc. 83, 4672 (1961).
14. Ramp, F. L., DeWitt, E. J. & Trapasso, L. E. Homogeneous hydrogenation
catalyzed by boranes. J. Org. Chem. 27, 4368–4372 (1962).
15. Yalpani, M. & Ko¨ster, R. Partial hydrogenation: from anthracene to coronene.
Chem. Ber. 123, 719–724 (1990).
16. Ko¨ster, R., Schu¨ßler, W. & Yalpani, M. Reduktion kondensierter Arene mitBH-
Boranen, I Reaktionen von Naphthalin, Anthracen und Phenanthren mit
Tetraalkyldiboranen (6). Chem. Ber. 122, 677–686 (1989).
17. Yalpani, M., Lunow, T. & Ko¨ster, R. Reduction of polycyclic arenes by-boranes,
II. Borane catalyzed hydrogenation of naphthalenes to tetralins. Chem. Ber. 122,
687–693 (1989).
´
18. Haenel, M. W., Narangerel, J., Richter, U-B. & Rufinska, A. The first liquefaction
46. Sumerin, V. et al. Amine-borane mediated metal-free hydrogen activation and
catalytic hydrogenation. Top. Curr. Chem. 332, 111–155 (2013).
47. Chai, J-D. & Head-Gordon, M. Long-range corrected hybrid density functionals
with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10,
6615–6620 (2008).
of high-rank bituminous coals by preceding hydrogenation with homogeneous
borane or iodine catalysts. Angew. Chem. 45, 1061–1066 (2006).
19. Siau, W-Y., Zhang, Y. & Zhao, Y. Stereoselective synthesis of Z-alkenes.
Top. Curr. Chem. 327, 33–58 (2012).
20. Jain, S. C. et al. Polyene pheromone components from an arctiid moth (Utetheisa
ornatrix): characterization and synthesis. J. Org. Chem. 48, 2266–2270 (1983).
21. Fu¨rstner, A., Guth, O., Rumbo, A. & Seidel, G. Ring closing alkyne metathesis.
Comparative investigation of two different catalyst systems and application to
the stereoselective synthesis of olfactory lactones, azamacrolides, and the
macrocyclic perimeter of the marine alkaloid nakadomarin A. J. Am. Chem. Soc.
121, 11108–11113 (1999).
22. Ghosh, A. K., Wang, Y. & Kim, J. T. Total synthesis of microtubule-stabilizing
agent (2)-laulimalide. J. Org. Chem. 66, 8973–8982 (2001).
23. Fu¨rstner, A. & Davies, P. W. Alkyne metathesis. Chem. Commun.
2307–2320 (2005).
24. Caggiano, T. J., Siegel, S., King, A. O. & Shinkai, I. Encyclopedia of Reagents
for Organic Synthesis Vol. 6 (ed. Paquette, L. A.) 3694–3869; 3861–3865;
3966–3867 (Wiley, 1995).
Acknowledgements
The authors acknowledge financial support from the Academy of Finland (139550) and the
Hungarian Research Foundation (OTKA, grant K-81927) and COST action CM0905
(Organocatalysis). The authors also thank A. Reznichenko for discussions and corrections
during the preparation of the manuscript, M. Lindqvist for corrections and S. Heikkinen for
help with NMR measurements.
Author contributions
K.C. and T.R. conceived and K.C. carried out the experiments. A.M. and I.P. designed and
performed the DFT studies. All authors discussed and co-wrote the paper.
Additional information
Supplementary information and chemical compound information are available in the
online version of the paper. Reprints and permissions information is available online at
to T.R. and those related to computational studies to I.P.
25. Schrock, R. R. & Osborn, J. A. Catalytic hydrogenation using cationic rhodium
complexes. II. The selective hydrogenation of alkynes to cis olefins. J. Am. Chem.
Soc. 98, 2143–2147 (1976).
26. Sodeoka, M. & Shibasaki, M. New functions of (arene)tricarbonylchromium(0)
complexes as hydrogenation catalysts: stereospecific semihydrogenation of
alkynes and highly chemoselective hydrogenation of ab-unsaturated carbonyl
compounds. J. Org. Chem. 50, 1147–1149 (1985).
Competing financial interests
The authors declare no competing financial interests.
6
© 2013 Macmillan Publishers Limited. All rights reserved.