10.1002/anie.201911793
Angewandte Chemie International Edition
RESEARCH ARTICLE
To account for the experimentally observed stereochemistry, a
mechanistic proposal for (S)-3b-promoted oxidation of (±)-1d to
give quinol-intermediate (R)-2dII, and sequential thiolation to
provide (S)-4ad, is outlined in Scheme 6.
functionalizations and for the development of their asymmetric
variants, as well as an alternative approach for bioconjugation.
Acknowledgements
This work was made possible by generous support from
Carlsberg Foundation “Semper Ardens”, FNU, Aarhus University.
K.A.J. was funded by a Villum Investigator grant (no. 25867) from
The Villum Foundation. H.N.T. thanks Novo Nordisk for a PhD
grant. We thank Frank Jensen for guidance on computational
ECD analysis as well as Jacob Overgaard and Mathias Kirk
Thøgersen for performing X-ray analysis.
Keywords: organocatalysis • umpolung • oxidative thiolation •
enantioselective -thiolation • bioconjugation
[1]
[2]
L. Zhu, D. Wang, Z. Jia, Q. Lin, M. Huang, S. Luo, ACS Catal. 2018, 8,
5466-5484.
Scheme 6. Proposed mechanism for the stereoselective formation of (S)-4ad.
Reaction model to account for the enantioselective, enamine-promoted
oxidation of (±)-1d and the observed stereospecific inversion on the thiolation
of quinol-intermediate (R)-2dII.
a) T. D. Beeson, A. Mastracchio, J. B. Hong, K. Ashton, D. W. C.
MacMillan, Science, 2007, 316, 582-585; b) H. Y. Jang, J. B. Hong, D.
W. C. MacMillan, J. Am. Chem. Soc. 2007, 129, 7004-7005; c) T. H.
Graham, C. M. Jones, N. T. Jui, D. W. C. MacMillan, J. Am. Chem. Soc.
2008, 130, 16494-16495; d) H. Kim, D. W. C. MacMillan, J. Am. Chem.
Soc. 2008, 130, 398-399; e) J. E. Wilson, A. D. Casarez, D. W. C.
MacMillan, J. Am. Chem. Soc. 2009, 131, 11332-11334; f) M. Amatore,
T. D. Beeson, S. P. Brown, D. W. C. MacMillan, Angew. Chem. Int. Ed.
2009, 48, 5121-5124; g) J. M. Um, O. Gutierrez, F. Schoenebeck, K. N.
Houk, D. W. C. MacMillan, J. Am. Chem. Soc. 2010, 132, 6001-6005; h)
N. T. Jui, J. A. O. Garber, F. G. Finelli, D. W. C. MacMillan, J. Am. Chem.
Soc. 2012, 134, 11400-11403.
In light of the recent phosphoric acid catalyzed formation of O-
bound quinol-adducts from -substituted cyclohexanones and
unactivated quinones, disclosed by List et al.,[8] we were
encouraged to investigate ketone substrates. Curiously, the
authors did not observe the desired quinol-adduct when using
DDQ as oxidant. However, we found that 2-phenylcyclohexanone
7 can be oxidized in the presence of DDQ and phosphoric acid
catalyst 8, and sequential addition of thiophenol provided the
desired thioether 10 in 21% yield (Scheme 7). This result
highlights the potential of the presented quinone-promoted
umpolung strategy since it can be extended to other
organocatalytic HOMO-raising strategies, thus enabling -
functionalization on a broader class of substrates.
[3]
a) L. Næsborg, L. A. Leth, G. J. Reyes-Rodríguez, T. A. Palazzo, V. Corti,
K. A. Jørgensen, Chem.-Eur. J. 2018, 24, 14844-14848; b) L. Næsborg,
V. Corti, L. A. Leth, P. H. Poulsen, K. A. Jørgensen, Angew. Chem. Int.
Ed. 2018, 57, 1606-1610; c) L. A. Leth, L. Næsborg, G. J. Reyes-
Rodríguez, H. N. Tobiesen, M. V. Iversen, K. A. Jørgensen, J. Am. Chem.
Soc. 2018, 140, 12687-12690; d) N. M. Rezayee, V. H. Lauridsen, L.
Næsborg, T. V. Q. Nguyen, H. N. Tobiesen, K. A. Jørgensen, Chem. Sci.
2019, 10, 3586-3591.
[4]
a) M. Lemaire, J. Doussot, A. Guy, Chem. Lett. 1988, 17, 1581-1584; b)
M. Bouquet, A. Guy, M. Lemaire, J. P. Guette, Comptes rendus, serie II,
1984, 299, 1389-1390; c) A. Guy, A. Lemor, D. Imbert, M. Lemaire,
Tetrahedron Lett. 1989, 30, 327-330; d) A. Guy, J. Doussot, M. Lemaire,
Synthesis 1991, 460-462.
Scheme 7. Reaction performed on 0.20 mmol scale (unoptimized conditions,
see Supporting Information).
[5]
[6]
A. E. Wendlandt, S. S. Stahl, Angew. Chem. Int. Ed. 2015, 54, 14638-
14658.
a) A. Bhattacharya, L. M. Dimichele, U. H. Dolling, A. W. Douglas, E. J.
J. Grabowski, J. Am. Chem. Soc. 1988, 110, 3318-3319; b) A.
Bhattacharya, L. M. DiMichele, U. H. Dolling, E. J. J. Grabowski, V. J.
Grenda, J. Org. Chem. 1989, 54, 6118-6120.
Conclusion
[7]
[8]
[9]
a) X. Guo, H. Mayr, J. Am. Chem. Soc. 2013, 135, 12377-12387; b) X.
Guo, H. Mayr, J. Am. Chem. Soc. 2014, 136, 11499-11512.
G. A. Shevchenko, B. Oppelaar, B. List, Angew. Chem., Int. Ed. 2018,
57, 10756-10759.
In summary, we have disclosed a new oxidative strategy based
on enamine catalysis merged with quinones as oxidants to access
-substituted O-bound quinol adducts as substitution-active
intermediates allowing for coupling of nucleophiles. The approach
is simple and enables a general -thiolation of a broad selection
of aldehydes in moderate to high yields. The study underscores a
stereoselective oxidation and subsequent transfer of chirality by
nucleophilic displacement at a quaternary center, accounting for
the observed enantioselectivities. We are confident that the
For the first proposal of an O-bound quinol adduct as electrophilic
intermediate in a substitution reaction (no experimental evidence of such
an intermediate was disclosed) see: H.-D. Becker, J. Org. Chem. 1965,
30, 989-994.
[10] V. S. Batista, R. H. Crabtree, S. J. Konezny, O. R. Luca, J. M. Praetorius,
New J. Chem. 2012, 36, 1141-1144.
[11] Shibatomi et al. recently disclosed a two-step procedure where -chloro-
-keto ester product were isolated form a Cu(II) catalyzed -chlorination.
methodology bears great potential for
a
variety of
This article is protected by copyright. All rights reserved.