DOI: 10.1039/C5CC06250K
Page 3 of 4
ChemComm
scavenger (eq 3). As expected, the reaction did not proceed and
In summary,
a
convenient and efficient method for
the product 3 could not be detected. These results indicated that
the C-H oxidative sulfenylation might be involved a free radical
process.
35 stereospecific synthesis of E-vinyl sulfides has been developed by
copper-mediated vinylic C-H oxidative sulfenylation. A variety
of terminal alkenes underwent the oxidative coupling reaction
with various disulfides successfully to afford the corresponding
vinyl sulfides in moderate to good yields. This atom-economic
40 transformation was realized by incorporation of both sulfur atoms
of aryl sulfides onto olefins. The utilization of alkenes without
prefunctionalization and commercially available disulfides as
coupling partners are significant advantages for the usefulness of
this C-H oxidative coupling reaction. The present reaction has
45 broad substrate scope of alkenes and sulfides with excellent
functional group tolerance, which provides a new valuable one-
pot shortcut for stereospecific preparation of vinyl sulfides.
5
Scheme 3. Possible mechanism.
Acknowledgements
50
We thank the National Natural Science Foundation of China (No.
21272177) for financial support.
Notes and references
55
On the basis of the present results and former reported results,12
a plausible mechanism was outlined in Scheme 3. Vinyl iodide
could not be detected in the presence of disulfide and the reaction
College of Chemistry and Materials Engineering, Wenzhou University,
Wenzhou 325035, China. E-mail:zxg@wzu.edu.cn.
Electronic supplementary information (ESI) available: Detailed
synthetic procedures and characterization of new compounds. See DOI:
60 10.1039/c000000x.
†
10 did not proceed in the presence of TEMPO (Scheme 2). These
results suggest that the reaction may proceed through a free
radical pathway. Firstly, aryl disulfide might decompose at high
temperature to form free radical RS·, 13 which reacts with iodine
to produce the RSI and iodine radical (eq 1, Scheme 3).14 The
15 chain propagation of iodine radical with aryl disulfide affords
active RSI and radical RS· (eq 2). The addition of radical RS· to
alkene 1 produces an alkyl radical A. The following oxidation by
I2 and Cu(OTf)2 produces the corresponding carbocation, which
loses a H+ to yield desired product 3-24 (Path 1). Alternatively
20 pathway is also possible (Path 2). The electrophilic addition of
RSI to the double bond of alkene 1 with aid of Cu(OTf)2 affords
unstable three-numbered cyclic sulfonium B, which can be
transformed easily to carbocation C. Finally, the deprotonation of
intermediate C gives the desired product 3-24.
1
(a) J. S. Lazo, K. Nemoto, K. E. Pestell, K. Cooley, E. C. Southwick,
D. A. Mitchell, W. Furey, R. Gussio, D. W. Zaharevitz, B. Joo, P.
Wipf, Mol. Pharmacol., 2002, 61, 720. (b) A. Lavecchia, S.
Cosconati, V. Limongelli, E. Novellino, ChemMedChem, 2006, 1,
540. (c) S. Pasquini, C. Mugnaini, C. Tintori, M. Botta, A. Trejos, R.
K. Arvela, M. Larhed, M. Witvrouw, M. Michiels, F. Christ, Z.
Debyser, F. Corelli, J. Med. Chem., 2008, 51, 5125. (d) H. S. Sader,
D. M. Johnson, R. N. Jones, Antimicrob. Agents Chemother., 2004,
48, 53. (e) P. Johannesson, G. Lindeberg, A. Johanson, G. V.
Nikiforovich, A. Gogoll, B. Synnergren, M. Le Greves, F. Nyberg, A.
Karlen, A. Hallberg, J. Med. Chem., 2002, 45, 1767. (f) M. Ceruti, G.
Balliano, F. Rocco, P. Milla, S. Arpicco, L. Cattel, F. Viola, Lipids,
2001, 36, 629. (g) E. Marcantoni, M. Massaccesi, M. Petrini, G.
Bartoli, M. C. Bellucci, M. Bosco, L. Sambri, J. Org. Chem., 2000,
65, 4553. (h) C. A. Dvorak, W. D. Schmitz, D. J. Poon, D. C. Pryde,
J. P. Lawson, R. A. Amos, A. I. Meyers, Angew. Chem., Int. Ed.,
2000, 39, 1664..
65
70
75
80
85
25 Vinyl sulfone derivatives show a wide range of useful
biological and pharmacological activities.15 To demonstrate the
applicability of this reaction in the synthesis of these types of
molecules, the further transformations of vinyl sulfides was
explored as outlined in Scheme 4. Treatment of product 3 with
30 30 % H2O2 in AcOH at room temperature afforded E-vinyl
sulfone 27 in 72% yield. 16
2
(a) E. Schaumann, Top. Curr. Chem., 2007, 274, 1. (b) A. Sabarre, J.
A. Love, Org. Lett., 2008, 10, 3941. (c) M. Bratz, W. H. Bullock, L.
E. Overman, T. Takemoto, J. Am. Chem. Soc., 1995, 117, 5958. (d)
W. H. Pearson, I. Y. Lee, Y. Mi, P. Stoy, J. Org. Chem., 2004, 69,
9109. (e) T. Mukaiyama, K. Kamio, S. Kobayashi, H. Takei, Bull.
Chem. Soc. Jpn., 1972, 4, 193. (f) R. A. McClelland, Can. J. Chem.,
1977, 55, 548. (g) E. Wenkert, T. W. Ferreira, E. L. Michelotti, J.
Chem. Soc., Chem. Commun., 1979, 637. (h) C. G. Bates, P.
Saejueng, M. Q. Doherty, D. Venkataraman, Org. Lett., 2004, 6,
5005.
Scheme 4. Synthetic applications of 3.
3
B. M. Trost, A. C. Lavoie, J. Am. Chem. Soc., 1983, 105, 5075.
90 4 (a) R. D. Miller, R. Hassig, Tetrahedron Lett., 1985, 26, 2395. (b) H.
Mizuno, K. Domon, K. Masuya, K. Tanino, I. Kuwajima, J. Org.
Chem., 1999, 64, 2648.
5
(a) Z. Liu, J. D. Rainier, Org. Lett., 2005, 7, 131. (b) M. L.
Macnaughtan, J. B. Gary, D. L. Gerlach, M. J. A. Johnson, J. W.
Kampf, Organometallics, 2009, 28, 2880..
95
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3