Communication
RSC Advances
5 J. M. M. Verkade, L. J. C. van Hemert, P. J. L. M. Quaedflieg and
F. P. J. T. Rutjes, Chem. Soc. Rev., 2008, 37, 29.
6 W. Notz, F. Tanaka, S. I. Watanabe, N. S. Chowdari, J.
M. Turner, R. Thayumanavan and C. F. J. Barbas, J. Org.
Chem., 2003, 68, 9624.
7 U. Kazmaier, Angew. Chem., Int. Ed., 2009, 48, 5790.
8 M. Hatano and K. Ishihara, Synthesis, 2010, 22, 3785.
9 C. Mukhopadhyay, A. Datta and R. J. Butcher, Tetrahedron Lett.,
2009, 50, 4246.
10 S. Kobayashi and R. Matsubara, Chem.–Eur. J., 2009, 15, 10694.
11 A. Cukalovic, J.-C. M. R. Monbaliu and C. V. Stevens, Top.
Heterocycl. Chem., 2010, 23, 161.
12 A. R. Katritzky, M. S. Kim and K. Widyan, ARKIVOC, 2008, iii,
91.
13 A. R. Katritzky, H. Yang and S. K. Singh, J. Org. Chem., 2005, 70,
286.
14 A. R. Katritzky, K. Manju, S. K. Singh and N. K. Meher,
Tetrahedron, 2005, 61, 2555.
15 A. R. Katritzky and P. A. Harris, Tetrahedron, 1990, 46, 987.
16 P. C. B. Page, S. M. Allin, E. W. Collington and R. A. E. Carr, J.
Org. Chem., 1993, 58, 6902.
17 J. S˛aczewski and M. Gdaniec, Tetrahedron Lett., 2007, 48, 7624.
18 A. R. Katritzky, P. P. Mohapatra, S. K. Singh, N. Clemens and K.
J. Kirichenko, J. Serb. Chem. Soc., 2005, 70, 319.
19 B. Merla and N. Risch, J. Prakt. Chem., 1999, 341, 472.
20 A. R. Katritzky, C. N. Fali and D. C. Oniciu, Tetrahedron, 1995,
51, 1069.
by including EDG or EWG substituents (compounds 1f–1i)
lowered the yield in comparison to the original compound 1b.
The latter results clearly indicate the impact of the pKa of the
counteranion generated (X) on the capture reaction: in the cases of
2a,b, the counteranions generated are weak bases, unable to
deprotonate 4a, despite a favourable equilibrium towards 3a. For
compounds 1h,i, the introduction of an EWG on the benzotriazole
lowers DGu but also impacts on the pKa of the corresponding
benzotriazolate (pKa = 8.56, 7.62 and 6.31 for X = H, Cl and NO2,
respectively).58 The introduction of an EDG (compounds 1f,g)
slightly increases the pKa of the corresponding benzotriazolate but
also impacts on DGu, becoming less favorable for the iminium
species 3b. According to these results, 1b was selected for further
testing.
To obtain further evidence for the pKa-sensitivity of the
Mannich-type capture step, other commercially available CH
acidic compounds were considered for reaction with 1b including
ethyl 2-methyl-3-oxobutanoate 4b (pKa = 12.3),59 methyl malonitrile
4c (pKa = 12.4),60 diethyl 2-methylmalonate 4d (pKa = 17)58 and
ethyl cyanopropanoate 4a (pKa = 9).59 The following yields were
obtained: 61, 29, 27 and 4% for the capture of 1b by 4a–d,
respectively, showing clearly a linear correlation between the pKa
of the CH acidic compound and the yield of the reaction with 1b.
Conclusions
21 A. R. Katritzky, S. Rachwal, B. Rachwal and P. J. Steel, J. Org.
Chem., 1992, 57, 4932.
22 A. R. Katritzky, S. Rachwal and B. Rachwal, J. Org. Chem., 1993,
58, 812.
23 A. R. Katritzky, S. Rachwal and B. Rachwal, J. Org. Chem., 1994,
59, 5206.
24 M. P. Dewick, Medicinal Natural Products: A Biosynthetic
Approach, John Wiley & Sons Ltd, 2002, 2nd edn.
25 R. S. Vardanyan and V. J. Hruby, Synthesis of Essential Drugs,
Elsevier, 2001.
This preliminary work documents the reactivity of aminoalk-
ylbenzotriazoles as Mannich electrophiles. In their reaction with
CH acidic compounds, several factors have been identified: (i) the
reaction heat for the formation of the iminium cation, (ii) the pKa
of the counteranion X, and (iii) the pKa of the CH acidic partner.
The pKa of both X and the CH acidic compound appears to be
crucial, whereas global electrophilicity of the corresponding
iminium cation seems to be secondary. These observations are
consistent with thermodynamic control of the reaction.
26 A. J. Humphrey and D. O’Hagan, Nat. Prod. Rep., 2001, 18, 494.
27 N. Maggi, A. Vigevani and R. Pallanza, Experientia, 1968, 24,
209.
Acknowledgements
28 A. C. Nikolopoulos and H. C. Schickaneder, Eur. Pat.
0996613B1, 2002.
29 Z. Itov and H. Meckler, Org. Process Res. Dev., 2000, 4, 291.
30 P. Blaney, R. Grigg, Z. Rankovic and M. Thoroughgood,
Tetrahedron Lett., 2000, 41, 6639.
31 J. W. Olney, U.S. Pat. 5037848, 1989.
32 E. Jassmann and H. Pfanz, Ger. Pat. 1084734, 1960.
33 W. Adamson, U.S. Pat. 2891890, 1959.
This work was supported by the Research Foundation-Flanders
(FWO-Vlaanderen; fellowship to JCMM). JCMM acknowledges
the ICT Department of Ghent University for access to HPC
facilities. The authors acknowledge the Kenan Foundation
(University of Florida), the King Abdulaziz University (Saudi
Arabia) and Henkel Ireland Ltd. for financial support and
permission to publish. Dr N. Lefevre is acknowledged for
stimulating discussions.
34 G. R. Brown, A. M. Bamford, J. Bowyer, D. S. James, N. Rankine,
E. Tang, V. Torr and E. J. Culbert, Bioorg. Med. Chem. Lett., 2000,
10, 575.
Notes and references
35 B. Ahmed-Omer and A. J. Sanderson, Org. Biomol. Chem., 2011,
9, 3854.
1 S. Patterson, D. C. Jones, E. J. Shanks, J. A. Frearson, I.
H. Gilbert, P. G. Wyatt and A. H. Fairlamb, ChemMedChem,
2009, 4, 1341.
2 M. Arend, B. Westermann and N. Risch, Angew. Chem., Int. Ed.,
1998, 37, 1044.
¨
36 P. J. Kairisalo, A. H. Jarvinen and P. J. Hukka, U.S. Pat. 5166437,
1992.
37 M. Nelson, W. Hillen and R. A. Greenwald, Tetracyclines in
¨
Biology, Chemistry and Medicine, Birkhauser Verlag, Switzerland,
3 Y. Zhao, Y. Pan, S.-B. D. Sim and C.-H. Tan, Org. Biomol. Chem.,
2012, 10, 479.
2001.
38 M. Johansen and H. Bundgaard, Arch. Pharm. Chem., Sci. Ed.,
1981, 9, 40.
4 J. W. Yang, C. Chandler, M. Stadler, D. Kampen and B. List,
Nature, 2008, 452, 453.
4154 | RSC Adv., 2013, 3, 4152–4155
This journal is ß The Royal Society of Chemistry 2013