ChemComm
Communication
Culture, Sports, Science and Technology, Japan, and the Funding
Program for Next Generation World-Leading Researchers (NEXT
Program, no. GR002).
Notes and references
1 N. Miyaura and Y. Yamamoto, in Comprehensive Organometallic
Chemistry III, ed. R. H. Crabtree, D. M. P. Mingos and P. Knochel,
Elsevier, Oxford, 2007, vol. 9, p. 145.
2 (a) M. M. Heravi and E. Hashemi, Tetrahedron, 2012, 68, 9145;
(b) S. Papst, A. F. M. Noisier, M. A. Brimble, Y. Yang and G. W.
Krissansen, Bioorg. Med. Chem., 2012, 20, 5139; (c) V. P. Ghidu, J. Q.
Wang, B. Wu, Q. S. Liu, A. Jacobs, L. J. Marnett and G. A. Sulikowski,
J. Org. Chem., 2008, 73, 4949; (d) E. P. Gillis and M. D. Burke, J. Am.
Chem. Soc., 2007, 129, 6716; (e) S. Harper, S. Avolio, B. Pacini,
M. Di Filippo, S. Altamura, L. Tomei, G. Paonessa, S. Di Marco,
A. Carfi, C. Giuliano, J. Padron, F. Bonelli, G. Migliaccio, R. De Francesco,
R. Laufer, M. Rowley and F. Narjes, J. Med. Chem., 2005, 48, 4547.
3 (a) N. Miyaura and K. Maruoka, in Synthesis of Organometallic Com-
pounds, ed. S. Komiya, Wiley, Chichester, 1997, p. 345; (b) K. L. Billingsley
and S. L. Buchwald, J. Org. Chem., 2008, 73, 5589; (c) K. L. Billingsley,
T. E. Barder and S. L. Buchwald, Angew. Chem., Int. Ed., 2007, 46, 5359;
(d) T. Ishiyama, J. Takagi, A. Kamon and N. Miyaura, J. Organomet. Chem.,
2003, 687, 284; (e) J. Takagi, K. Takahashi, T. Ishiyama and N. Miyaura,
J. Am. Chem. Soc., 2002, 124, 8001; ( f ) T. Ishiyama and N. Miyaura,
J. Organomet. Chem., 2000, 611, 392; (g) K. Takahashi, J. Takagi,
T. Ishiyama and N. Miyaura, Chem. Lett., 2000, 126; (h) P. R. Eastwood,
Tetrahedron Lett., 2000, 41, 3705.
Scheme 3 Proposed catalytic cycle.
4 For aromatic C–H borylation, see: (a) T. Ishiyama and N. Miyaura, Pure
Appl. Chem., 2006, 78, 1369; (b) T. Ishiyama, J. Takagi, Y. Yonekawa,
J. F. Hartwig and N. Miyaura, Adv. Synth. Catal., 2003, 345, 1103;
(c) T. Ishiyama, Y. Nobuta, J. F. Hartwig and N. Miyaura, Chem.
Commun., 2003, 2924; (d) T. Ishiyama and N. Miyaura, J. Organomet.
Chem., 2003, 680, 3; (e) J. Takagi, K. Sato, J. F. Hartwig, T. Ishiyama and
N. Miyaura, Tetrahedron Lett., 2002, 43, 5649; ( f ) T. Ishiyama, J. Takagi,
K. Ishida, N. Miyaura, N. R. Anastasi and J. F. Hartwig, J. Am. Chem. Soc.,
2002, 124, 390; (g) T. Ishiyama, J. Takagi, J. F. Hartwig and N. Miyaura,
Angew. Chem., Int. Ed., 2002, 41, 3056; (h) J. Y. Cho, M. K. Tse,
D. Holmes, R. E. Maleczka and M. R. Smith III, Science, 2002, 295, 305.
5 For our reports on alkenyl C–H borylation, see: (a) T. Kikuchi, J. Takagi,
H. Isou, T. Ishiyama and N. Miyaura, Chem.–Asian J., 2008, 3, 2082;
(b) T. Kikuchi, J. Takagi, T. Ishiyama and N. Miyaura, Chem. Lett., 2008, 664.
6 (a) I. A. I. Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy and J. F.
Hartwig, Chem. Rev., 2010, 110, 890; (b) J. Takaya, N. Kirai and N. Iwasawa,
The cross-coupling product 4 was obtained in 47% yield (78%,
GC yield) from the two-step reaction.
Two proposed catalytic cycles are shown in Scheme 3. In both
the catalytic cycles, the mono- (n = 1) or tris- (n = 3) boryliridium
complex A is first produced by reactions of Ir(I) complexes with
B2pin2.14 In pathway 1, involving oxidative addition and reductive
elimination, the electron-donating oxygen atom in the ester group
coordinates with the Ir metal center (complex B, Scheme 3), and
then oxidative addition of the vinylic C–H bond to A produces the
pseudo-metallacycle C. After reductive elimination, the Ir–hydride
complex D and the product 3a are produced. Finally, oxidative
addition of B2pin2 to D, followed by reductive elimination of
HBpin, regenerates A. In pathway 2, involving a 1,4-insertion
and b-hydride elimination, the 1,4-insertion of the carbonyl-
coordinated complex E produces the iridium enolate F.15 The
subsequent isomerization of F affords the Ir complex G, which
has an Ir–C bond with a syn configuration between the Ir center
and the b-H. The product 3a and D are then formed through
b-hydride elimination from the C-enolate Ir complex G.
´
J. Am. Chem. Soc., 2011, 133, 12980; (c) N. Selander, B. Willy and K. J. Szabo,
Angew. Chem., Int. Ed., 2010, 49, 4051; (d) A. Kondoh and T. F. Jamison,
Chem. Commun., 2010, 46, 907; (e) T. Ohmura, Y. Takasaki, H. Furukawa
and M. Suginome, Angew. Chem., Int. Ed., 2009, 48, 2372; ( f ) V. J. Olsson
´
and K. J. Szabo, J. Org. Chem., 2009, 74, 7715; (g) C. N. Garon, D. I. McIsaac,
C. M. Vogels, A. Decken, I. D. Williams, C. Kleeberg, T. B. Marder and
´
S. A. Westcott, Dalton Trans., 2009, 1624; (h) V. J. Olsson and K. J. Szabo,
Org. Lett., 2008, 10, 3129; (i) I. A. I. Mkhalid, R. B. Coapes, S. N. Edes,
D. N. Coventry, F. E. S. Souza, R. L. Thomas, J. J. Hall, S. W. Bi, Z. Y. Lin
and T. B. Marder, Dalton Trans., 2008, 1055; ( j) A. Caballero and S. Sabo-
´
In summary, an iridium complex consisting of [Ir(OMe)(cod)]2
and AsPh3 was found to be an efficient catalyst for the vinylic
C–H borylation of 1-cycloalkenecarboxylic derivatives with 2. This
borylation proceeded at the vinylic position with good selectivity,
even though substrates have a phenyl group which would be
reactive in Ir-catalyzed borylation. Additionally, the borylation of
substrates containing various functional groups such as halogen,
acyl, alkoxycarbonyl, carbamoyl, and epoxy groups afforded the
corresponding products. Bipyridine, phosphine, and NHC ligands
Etienne, Organometallics, 2007, 26, 1191; (k) V. J. Olsson and K. J. Szabo,
Angew. Chem., Int. Ed., 2007, 46, 6891; (l) R. B. Coapes, F. E. S. Souza,
R. L. Thomas, J. J. Hall and T. B. Marder, Chem. Commun., 2003, 614.
7 (a) T. Ishiyama, H. Isou, T. Kikuchi and N. Miyaura, Chem. Commun.,
2010, 46, 159; (b) H. Itoh, T. Kikuchi, T. Ishiyama and N. Miyaura,
Chem. Lett., 2011, 1007.
8 K. Yamazaki, S. Kawamorita, H. Ohmiya and M. Sawamura, Org.
Lett., 2010, 12, 3978.
9 A. Ros, R. Lopez-Rodrıguez, B. Estepa, E. Alvarez, R. Fernandez and
J. M. Lassaletta, J. Am. Chem. Soc., 2012, 134, 4573.
10 T. A. Boebel and J. F. Hartwig, J. Am. Chem. Soc., 2008, 130, 7534.
11 V. Farina and B. Krishnan, J. Am. Chem. Soc., 1991, 113, 9585.
´
´
´
´
have been used for aromatic and alkenyl C–H borylation, but the 12 We previously reported a one-pot borylation/Suzuki–Miyaura cross-
coupling sequence, see: T. Kikuchi, Y. Nobuta, J. Umeda, Y. Yamamoto,
present results show the first vinylic C–H borylation using AsPh3.
T. Ishiyama and N. Miyaura, Tetrahedron, 2008, 64, 4967.
Additionally, a one-pot borylation/cross-coupling procedure for
13 M. D. Petersen, S. V. Boye, E. H. Nielsen, J. Willumsen, S. Sinning,
the rapid synthesis of a drug candidate was also conducted, and
shows the synthetic usefulness of this reaction.
O. Wiborg and M. Bols, Bioorg. Med. Chem., 2007, 15, 4159.
14 (a) J. F. Hartwig, Acc. Chem. Res., 2012, 45, 864; (b) T. M. Boller,
J. M. Murphy, M. Hapke, T. Ishiyama, N. Miyaura and J. F. Hartwig,
J. Am. Chem. Soc., 2005, 127, 14263.
This work was supported by a Grant-in-Aid for Scientific
´ `
´
Research (B) (No. 21350049) from the Ministry of Education, 15 F. Denes, A. Perez-Luna and F. Chemla, Chem. Rev., 2010, 110, 2366.
c
7548 Chem. Commun., 2013, 49, 7546--7548
This journal is The Royal Society of Chemistry 2013