4
1945. (k) Sunada, Y.; Kawakami, H.; Imaoka, T.; Motoyama,
Mechanistically, trimethylsilyl chloride as a Lewis acid activates
the carbonyl functionality and provides very reactive electrophile
source. In situ generated imine can further be reduced with
lithium aluminum hydride affording the products as shown in
Scheme 2. Our approach allowed us to have quick access of the
products as the rate of the reaction was found to be very fast in
comparison with the lithium aluminum hydride-aluminum
Y.; Nagashima, H. Angew. Chem., Int. Ed. 2009, 48, 1. (l) Zhou,
S.; Junge, K.; Addis, D.; Das, S.; Beller, M. Angew. Chem., Int.
Ed. 2009, 48, 9507. (m) Fernandes, A. C.; Roma˜o, C. C. J. Mol.
Catal. A: Chem. 2007, 272, 60. (n) Das, S.; Addis, D.; Zhou, S.;
Junge, K.; Beller, M. J. Am. Chem. Soc. 2010, 132, 1770.
13. Xiao, K.-J.; Luo, J.-M.; Ye, K.-Y.; Wang, Y.; Huang, P.-Q.
Angew. Chem. Int. Ed. 2010, 49, 3037.
14. Barbe, G.; Charette, A. B. J. Am. Chem. Soc. 2008, 130 , 1, 18.
15. Hua-Jie Zhu, Kai-Tao Lu, Guang-Ri Sun, Jin-Bao He, Hai-Qing
Li and Charles U. Pittman, Jr. New J. Chem. 2003, 27, 409.
16. (a) Rajashekhar, B.; Kaiser, E. T. J. Org. Chem. 1985, 50, 5480.
(b) McWilliams, J. C.; Clardy, J. J. Am. Chem. Soc. 1994, 116,
8378. (c) Huang, P.-Q.; Wei, B.-G.; Ruan, Y.-P. Synlett 2003,
1663. (d) Campbell, A. L.; Pilipauqkas, D. R.; Khanna, I. K.;
Rhodes, R. A. Tetrahedron Lett. 1987, 28, 2331.
chloride mixtures-mediated reactions22,23 and
experimental procedure is described in reference section.24
a
typical
In conclusion, we have reported the reducing system employing
lithium aluminum hydride, (LAH) activated by trimethylsilyl
chloride (TMSCl) which reduces even the tertiary and secondary
amides to the corresponding amines with high enantio-or
diastereoretention and excellent yields.
17. Akamatsu, H.; Kusumoto, S.; Fukase, K. Tetrahedron Lett. 2002,
43, 8867.
18. (a) Finholt, A. E.; Bond, A. C.; Schlesinger, H. I. ibid. 1947, 69,
1999. (b) Wiberg, E.; Graf, H.; Schmidt, M.; Uson, R. Z.
Nuturforsch., 1952, 7b, 578.
Supplementary Material
19. (a) Wiberg, E.; Jahn, A. ibid. 1952, 7b, 581. (b) Jorgenson, M. J.
Tetrahedron Letters, 1962, 13, 559.
20. Barral, K.; Priet, S.; Michelis, C.D.; Sire, J.; Neyts, J.; Balzarini,
J.; Canard, B.; Alvarez, K. Eur. J. Med. Chem. 2010, 45, 849.
21. Donohue, A.C.; Jackson,.W.R. Aust. J. Chem. 1995, 48, 1741 –
1746.
Experimental procedures and compound characterization data are
described in supplementary material.
References
22. (a) Finholt, A. E.; Bond, A. C.; Schlesinger, H. I. J. Am. Chem.
Soc. 1947, 69, 1197. (b) Brown H. C.; Yoon, N. M. J. Am. Chem.
Soc. 1966, 88, 1464.
23. (a) Wiberg, E. Angew. Chem., 1953, 65, 16. (b) Brewster J. H.;
Bayer, H. O. J. Org. Chem., 1964, 29, 105. (c) Eliel, E. E. Record
Chem. Progr. 1961, 22, 129. (d) Seyden-Penne, J. Reductions by
the Alumino and Borohydrides in Organic Synthesis, 2nd ed.;
Wiley: New York, 1997. (e) Gribble, W. G. Chem. Soc. ReV.
1998, 27, 395.
1. (a) Ricci, M. A. Modern Amination Methods; Wiley: New York,
2000. (b) Bo¨hm, H.-J.; Klebe, G. Angew. Chem., Int. Ed. Engl.
1996, 35, 2588. (c) Encyclopedia of the Alkaloids; Glasby, J. S.,
Ed.; Plenum Press: New York, 1975.
2. (a) Brown, H. C.; Weissman, P. M.; Yoon, N.-M. J. Am. Chem.
Soc. 1966, 88, 1458. (b) Cha, J. S.; Lee, J. C.; Lee, H. S.; Lee, S.
E.; Kim, J. M.; Kwon, O. O.; Min, S. J. Tetrahedron Lett. 1991,
32, 6903. (c) Uffer A.; Schlittler, E. Helv. Chim. Acta, 1946, 31,
1397.
24. In a typical experimental procedure, amide, 1a (10 g, 33.43
mmol) and dichloromethane (100 mL) were charged into a round
bottomed flask and stirred under nitrogen atmosphere for 10-15
min and cooled to 0-5 ˚C. Trimethylsilyl chloride (5.1 mL, 40.12
mmol) was then added to the mixture over 10-15 min. and stirred
for 10-15 min. at same temperature. Lithium aluminum hydride
(19.5 mL, 46.81 mmol) in tetrahydrofuran solution is added
dropwise at -10 to 0 ˚C. After complete addition, the solution is
allowed to stir for 1-2 h at 0 to 10 ˚C. After completion of
reaction (TLC), the reaction mass was quenched by slow
dropwise addition of 2M sodium hydroxide (30 mL) and reaction
mixture was extracted with dichloromethane (25 mL). The
organic layers were combined, washed with 20% sodium chloride
solution. The solvent was evaporated under reduced pressure to
get the crude material which was dissolved in isopropyl alcohol
(50 mL). Then maleic acid (5.0 g, 43.46 mmol) was added and
stirred for 2-3 h at ambient temperature followed by cooling it to
0-10 ˚C for additional 2-3 h. The obtained solid was collected by
filtration, washed with isopropyl alcohol (10 mL) and dried at 50-
55 ˚C to afford the title compound 1b‘ as white solid (11.5 g,
85%).
3. (a) Kornet, M. J.; Tan, S. I. J. Org. Chem. 1968, 33, 3637. (b)
Brown, H. C.; Heydkamp, W. R.; Breuer, E.; Murphy, W. S. J.
Am. Chem. Soc. 1964, 86, 3566. (c) Brown, H. C.; Bigley, D. B.;
Arora, S. K.; Yoon, N. M. J. Am. Chem. Soc. 1970, 92, 7161. (d)
Godjoian, G.; Singaram, B. Tetrahedron Lett. 1997, 38, 1717.
4. For reduction with other agents/systems, see: (a) DIBALH:
Winterfeldt, E. Synthesis 1975, 617. (b) NaBH4–TFA and
NaBH4–TFAA: Gribble, G. W.; Nataitis, C. F. Org. Prep.
Proced. Int. 1985, 17, 317. (c) NaBH4–I2: Mckennon, M. J.;
Meyers, A. I.; Drauz, K.; Schwarm, M. J. Org. Chem. 1993, 58,
3568. (d) LiH3BNMe2: Flaniken, J. M.; Collins, C. J.; Lanz, M.;
Singaram, B. Org. Lett. 1999, 1, 799.
5. (a) Hanada, S.; Ishida, T.; Motoyama, Y.; Nagashima, H. J. Org.
Chem. 2007, 72, 7551. (b) Brown, H. C.; Heim, P. Tetrahedron
Letters. 1999, 40, 643.
6. Das, S.; Join, B.; Junge, K.; Beller, M. Chem. Commun., 2012, 48,
2683.x
7. Patra, P. K.; Nishide, K.; Fuji, K.; Node, M. Synthesis 2004, 7,
1003.
8. (a) Reily, M. D.; Uhlendorf, S. E.; Zisek, K. A. J. Heterocycl.
Chem. 1991, 28, 517. (b) Voight, E. A.; Bodenstein, M. S.;
Ikemoto, N.; Kress, M. H. Tetrahedron Letters 2006, 47, 1717.
9. Lampariello, L. R.; Peruzzi, D.; Sega, A.; Taddei, M. Letters in
Organic Chemistry 2005, 2, 3, 265.
10. Gayane Godjoian, G.; Singaram, B. Tetrahedron Letters, 1997,
38, 10, 1717.
11. Das, S.; Addis, D.; Junge, K.; Beller, M. Chem. Eur. J. 2011, 17,
12186.
12. (a) Kuwano, R.; Takahashi, M.; Ito, Y. Tetrahedron Lett. 1998,
39, 1017–1020. (b) Motoyama, Y.; Mitsui, K.; Ishida, T.;
Nagashima, H. J. Am. Chem. Soc. 2005, 127, 13150. (c)
Sasakuma, H.; Motoyama, Y.; Nagashima, H. Chem. Commun.
2007, 4916. (d) Hanada, S.; Motoyama, Y.; Nagashima, H.
Tetrahedron Lett. 2006, 47, 6173. (e) Hanada, S.; Tsutsumi, E.;
Motoyama, Y.; Nagashima, H. J. Am. Chem. Soc. 2009, 131,
15032. (f) Selvakumar, K.; Rangareddy, K.; Harrod, J. F. Can. J.
Chem. 2004, 82, 1244. (g) Sakai, N.; Fujii, K.; Konakahara, T.
Tetrahedron Lett. 2008, 49, 6873. (h) Motoyama, Y.; Aoki, M.;
Takaoka, N.; Aoto, R.; Nagashima, H. Chem. Commun. 2009,
1574. (i) Park, S.; Brookhart, M. J. Am. Chem. Soc. 2012, 134 , 1,
640. (j) Igarashi, M.; Fuchikami, T. Tetrahedron Lett. 2001, 42,