114
A. Postigo et al. / Journal of Organometallic Chemistry 656 (2002) 108Á115
/
(s), 1610 (m), 1597 (s), 1481 (s), 1460 (s), 1224 (s), 970
(m), 748 (s), 526 (s).
1.82, 3.7, 17.2 Hz), 6.18 (double quintet, 1H, 17.2Hz, 5.1
Hz, Jꢁ
12.1), 7.01 (cplx.m, 2H), 7.41 (cplx.m, 2H). 13C-
NMR (in CDCl3) d (ppm): ꢀ0.92, 68.59, 110.47,
/
/
117.08, 120.53, 128.13, 130.61, 133.52, 135.02, 163.25.
GCMS (m/z, %): 206 ([M]ꢂ, 45), 191 (95), 175 (17), 163
(96), 151 (81), 150 (39), 149 (71), 135 (100), 15 (21), 91
(63), 73 (31), 59 (21), 41 (31).
4.5.2. (2-Allyloxy-phenyl)-trimethylstannane (6)
This compound [20] was isolated (38% yield) as
indicated above from reaction of 1-allyloxy-2-iodoben-
zene and Me3Snꢀ ions in HMPA, according to the
general procedure (vide supra), and characterized by 1H-
NMR and 13C-NMR, EIHRMS, and GCÁ
/
MS data as
follow: H-NMR (in CD3CN) d (ppm): 0.25 (ss, 9H),
4.54 (dt, 2H, Jꢁ1.82, 3.3, 8.4 Hz), 5.26 (dq, 1H, Jꢁ
1.82, 3.3, 10.6 Hz), 5.39 (dq, 1H, Jꢁ1.82, 3.6, 17.5 Hz),
6.09 (double quintet, 1 H, Jꢁ5.12, 10.6, 15.7 Hz), 6.93
(cplx.m, 2H), 7.35 (cplx.m, 2H). 13C-NMR (in CD3CN)
d (ppm): ꢀ8.74, 70.06, 112.04, 118.05, 122.69, 131.15,
131.50, 135.41, 138.04, 164.34. HRMS ([M]ꢂꢀ
15 for
C11H15O120Sn): 283.0098. Calc.: 283.0145. GCÁ
MS: 283
1
Acknowledgements
/
/
/
This work was supported in part by the Consejo de
Investigaciones de la Provincia de Co´rdoba (CONI-
/
COR), the Consejo Nacional de Investigaciones Cient´ı
-
/
ficas y Te´cnicas (CONICET), SECYT, Universidad
Nacional de Co´rdoba and FONCYT, Argentina.
S.E.V. gratefully acknowledges receipt of a fellowship
from CONICET.
/
/
(79), 281 (58), 279 (35), 268 (0.5), 253 (4), 242 (9), 240
(6), 219 (17), 212 (6), 133 (100), 131 (8), 120 (2), 105 (4),
91 (32), 69 (7).
References
4.5.3. Trimethyl-(1-phenoxy-allyl)-stannane (8a)
This compound was synthesized from (1-chloro-
allyloxy)-benzene (vide supra) and Me3Snꢀ in HMPA,
in 50% yield (determined by GC), according to the
following general procedure: To an HMPA solution of
sodium trimethyltin (4.7 mmol in 2 ml of solvent)
prepared as described above, (1-chloro-allyloxy)-ben-
zene (2.4 mmol dissolved in 1 ml of HMPA) was slowly
introduced by syringe, and the mixture was left stirring
to react for 48 h at room temperature (r.t.) in the dark.
The reaction was worked up as usual, and the crude was
chromatographed over silca-gel column chromatogra-
phy, using CH2Cl2:petroleum ether (5:95) as eluants
[1] K.R. Wursthorn, H.G. Kuivila, G.F. Smith, J. Am. Chem. Soc.
100 (1978) 2779.
[2] (a) J.P. Quintard, S. Hauvette-Frey, M. Pereyre, J. Organomet.
Chem. 112 (1976) C11;
(b) J.P. Quintard, S. Hauvette-Frey, M. Pereyre, J. Organomet.
Chem. 159 (1978) 147.
[3] C.C. Yammal, J.C. Podesta´, R.A. Rossi, J. Org. Chem. 57 (1992)
5720.
[4] C.C. Yammal, J.C. Podesta´, R.A. Rossi, J. Organomet. Chem.
509 (1996) 1.
[5] (a) E.F. Co´rsico, R.A. Rossi, Synlett (2000) 227;
(b) E.F. Co´rsico, R.A. Rossi, Synlett (2000) 230.
[6] D. Wittenberg, H. Gilman, Quaterly Rev. (1960) 116.
[7] A. Postigo, R.A. Rossi, Org. Lett. 8 (2001) 1197.
[8] A. Postigo, S.E. Vaillard, R.A. Rossi, unpublished results.
[9] J.F. Bunnett, Acc. Chem. Res. 11 (1978) 413.
[10] It is known that 2,3-dehydrobenzotrifluoride, upon reaction with
PhLi, affords 46% of the respective meta-substituted isomer. See
R.W. Hoffmann, Dehydrobenzene and Cycloalkanes, Verlag
(39% isolated yield), and characterized by 1H-NMR,
1
MS, and EIHRMS data as follow: H-NMR (in
GCÁ
/
CDCl3) d (ppm): 0.26 (s, 9H), 3.96 (dt, 1H), 5.45 (tq, 2
H), 5.35 (cplx. m, 1H), 6.80 (cplx. m, 2H), 6.90 (cplx.m,
1H), 7.28 (cplx.m, 2H). HRMS ([M]ꢂꢀ
/
15 for
MS
Chemie. GmbH. Academic Press, 11 (1967) 106Á107.
/
C11H15O120Sn): 283.0160. Calc.: 283.0145. GCÁ
/
[11] (a) For reviews, see: (a) R.A. Rossi, R.H. de Rossi, Aromatic
Substitution by the SRN1 Mechanism; ACS Monograph 178;
Washington, D.C., 1983;
(m/z, %): 298 ([M]ꢂ., 5), 283 (25), 281 (20), 279 (15),
253 (2), 213 (3), 166 (15), 165 (100), 163 (86), 161 (51),
150 (5), 133 (23), 117 (4), 115 (3), 105 (28), 94 (6), 77
(18), 51 (15).
(b) R.A. Rossi, A.B. Pierini, A.N. Santiago, Aromatic Substitu-
tion by the SRN1 Reaction. In: L.A. Paquette. and R. Bittman
(Eds.), Organic Reactions, Wiley, New York, 1999; Vol. 54, pp. 1-
271;
(c) R.K. Norris, in: B.M. Trost (Ed.), Comprehensive Organic
Synthesis, 4 (1991) 451;
(d) R.A. Rossi, A.B Pierini, A.B. Pene´nory, in: S. Patai, Z.
˜ ˜
4.5.4. Compound 8b
/
HRMS ([M]ꢂꢀ15 for C11H15O117Sn): 283.0145.
Calc.: 283.0166.
Rappoport (Eds.), The Chemistry of Functional Group, Wiley,
Chichester, Suppl. D2, Ch. 24, 1995, p. 1395.
[12] (a) G.F. Meijs, A.L.J. Beckwith, J. Am. Chem. Soc. 108 (1986)
5890;
4.5.5. (2-Allyloxy-phenyl)-trimethyl-silane (11)
The compound [21] was isolated as indicated above,
(b) A.L.J. Beckwith, G.F. Meijs, J. Org. Chem. 52 (1987) 1922;
(c) A.L.J. Beckwith, S.M. Palacios, J. Phys. Org. Chem. 4 (1991)
404.
and characterized by 1H-NMR and 13C-NMR, and
1
MS data as follow: H-NMR (in CD3COCD3) d
GCÁ
/
[13] S.M. Moerlein, J. Organomet. Chem. 319 (1987) 29.
[14] C. Eaborn, H.L. Hornfeld, D.R.M. Walton, J. Organomet.
Chem. 10 (1967) 529.
(ppm): 0.35 (ss, 9 H), 4.68 (dt, 2H, Jꢁ
/1.46, 3.3, 5.5 Hz),
5.33 (dq, 1H, Jꢁ1.46, 3.3, 12.1 Hz), 5.51 (dq, 1H, Jꢁ
/
/