glycosyl acceptor (building block).5 A method consisting
of activation of a precursor in the absence of a building
block, followed by the addition of a building block, is
beneficial because one activation protocol can be used
iteratively,1d,6 and therefore the glycosylation can be easily
repeated in a one-pot sequential manner enabling auto-
mated synthesis of oligosaccharides (Figure 1).7
direction of assembly from Seeberger method based on the
acceptor-bound solid-support approach. If the present
method would be a solid-support approach, it would be
the donor-bound version. We also report the synthesis of
partial structures of poly-β-D-(1À6)-N-acetylglucosamine
(PNAG), by assembling six thioglycosides in a one-pot
sequential manner using an automated synthesizer devel-
oped for the method.
We focused on the synthesis of oligoglucosamines,10
because PNAG has received significant research interest
as the major component of the biofilm formed by
pathogens.11 We initiated our study by optimizing the
structure of the aryl group in arylthioglycosides both
as precursors of glycosyl triflates and building blocks
(Table 1). Arylthioglycoside 1a (Ar = 4-CH3C6H4-,
Eox = 1.65 V vs SCE) was electrochemically oxidized to
generate glycosyl triflate 2 according to our previous
procedure (see the Supporting Information). The reac-
tion with building block 3a (Ar = 4-CH3C6H4-, Eox
=
1.54 V vs SCE), which has the same aryl group, gave
the corresponding disaccharide 4a in 84% yield. The 1,6-
anhydrosugar 5 was also obtained in 13% yield, which was
produced by the intramolecular glycosylation of 3a.12 To
prevent the formation of 5, the reaction with a building
block bearing a bulky aryl group (3b, Ar = 2,6-(CH3)2-
C6H3-, Eox = 1.50 V vs SCE) was examined.13 Although
the yield of 5 decreased slightly to 8%, the yield of the
desired 4b also decreased. However, the use of a building
block bearing an electron-withdrawing fluorine atom on
the phenyl ring (3c, Ar = 4-FC6H4-, Eox = 1.67 V vs SCE)
resulted in the formation of the corresponding disacchar-
ide 4c in 84% yield. Now, the 1,6-anhydrosugar 5 was
produced only in a trace amount. The structure of the
aryl group in the precursor proved important. The use of
building block 3c with precursor 1c gave the best result
among those examined (4c: 92% yield). Therefore, the
remaining syntheses of oligoglucosamines were carried out
using thioglycosides having the 4-FC6H4- group on sulfur.
Figure 1. Iterative synthesis of oligosaccharides based on the
activation of a thioglycoside donor in the absence of a glycosyl
acceptor.
Herein, we report a new method for automated solution-
phase synthesis of oligosaccharides based on electro-
chemical activation8 of thioglycosides to generate glycosyl
triflates in the absence of a building block.9 This method
enables us to make up oligosaccharides in the different
(9) (a) Nokami, T.; Shibuya, A.; Tsuyama, H.; Suga, S.; Bowers,
A. A.; Crich, D.; Yoshida, J. J. Am. Chem. Soc. 2007, 129, 10922. (b)
Nokami, T.; Tsuyama, H.; Shibuya, A.; Nakatsutsumi, T.; Yoshida, J.
Chem. Lett. 2008, 37, 942. (c) Nokami, T.; Shibuya, A.; Manabe, S.; Ito,
Y.; Yoshida, J. Chem.;Eur. J. 2009, 15, 2252. (d) Nokami, T.; Nozaki,
Y.; Saigusa, Y.; Shibuya, A.; Manabe, S.; Ito, Y.; Yoshida, J. Org. Lett.
2011, 13, 1544. (e) Nokami, T.; Shibuya, A.; Saigusa, Y.; Manabe, S.;
Ito, Y.; Yoshida, J. Beilstein J. Org. Chem. 2012, 6, 456. (f) Nokami, T.;
Saito, K.; Yoshida, J. Carbohydr. Res. 2012, 363, 1.
(5) (a) Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.; Baasov, T.;
Wong, C.-H. J. Am. Chem. Soc. 1999, 121, 734. (b) Tanaka, H.; Adachi,
M.; Tsukamoto, H.; Ikeda, T.; Yamada, H.; Takahashi, T. Org. Lett.
2002, 4, 4213. (c) Tanaka, H.; Matoba, N.; Tsukamoto, H.; Takimoto,
H.; Yamada, H.; Takahashi, T. Synlett 2005, 824.
(10) Chemical syntheses of PNAG, see: (a) Melean, L. G.; Love,
K. R.; Seeberger, P. H. Carbohydr. Res. 2002, 337, 1893. (b) Yang, F.;
He, H.; Du, Y. Tetrahedron Lett. 2002, 43, 7561. (c) Gening, M. L.;
Titov, D. V.; Grachev, A. A.; Gerbst, A. G.; Yudina, O. N.; Shashkov,
A. S.; Chizhov, A. O.; Tsvetkov, E.; Nifantiev, N. E. Eur. J. Org. Chem.
(6) (a) Crich, D.; Sun, S. J. Org. Chem. 1997, 62, 1198. (b) Crich, D.;
Sun, S. J. Am. Chem. Soc. 1997, 119, 11217. (c) Crich, D.; Sun, S. J. Am.
Chem. Soc. 1998, 120, 435. (d) Yamago, S.; Yamada, T.; Hara, O.; Ito,
Y.; Yoshida, J. Org. Lett. 2001, 3, 3867. (e) Crich, D.; Chandrasekera,
N. S. Angew. Chem., Int. Ed. 2004, 43, 5386. (f) Yamada, T.; Kinjyo, S.;
Yoshida, J.; Yamago, S. Chem. Lett. 2005, 34, 1556. (g) Yamada, T.;
Takemura, K.; Yoshida, J.; Yamago, S. Angew. Chem., Int. Ed. 2006, 45,
7575.
(7) (a) Huang, X.; Huang, L.; Wang, H.; Ye, X.-S. Angew. Chem., Int.
Ed. 2004, 43, 5221. (b) van den Bos, L. J.; Boltje, T. J.; Provoost, T.;
Mazurek, J.; Overkleeft, H. S.; van der Marel, G. A. Tetrahedron Lett.
2007, 48, 2697.
(8) For the electrochemical method in organic synthesis, see: (a)
Moeller, K. D. Tetrahedron 2000, 56, 9527. (b) Lund, H. J. Electrochem.
Soc. 2002, 149, S21. (c) Sperry, J. B.; Wright, D. L. Chem. Soc. Rev. 2006,
35, 605. (d) Yoshida, J.; Kataoka, K.; Horcajada, R.; Nagaki, A. Chem.
Rev. 2008, 108, 2265. (e) Waldvogel, S. R.; Elsler, B. Electrochim. Acta
2012, 82, 434.
ꢀ
ꢀ ꢀ
2010, 2465. (d) Fekete, A.; Borbas, A.; Gyemant, G.; Kandra, L.;
Fazekas, E.; Ramasubbu, N.; Antus, S. Carbohydr. Res. 2011, 346, 1445.
(11) Biological studies of PNAG, see: (a) Wang, X.; Preston, J. F., III;
Romeo, T. J. Bacteriol. 2004, 186, 2724. (b) Sloan, G. P.; Love, C. F.;
Sukumar, N.; Mishra, M.; Deora, R. J. Bacteriol. 2007, 189, 8270. (c) Izano,
E. A.; Sadovskaya, I.; Vinogradov, E.; Mulks, M. H.; Velliyagounder, K.;
Ragunath, C.; Kher, W. B.; Ramasubbu, N.; Jabbouri, S.; Perry, M. B.;
ꢀ
Kaplan, J. B. Microb. Pathog. 2007, 43, 1. (d) Gening, M. L.; Maira-Litran,
T.; Kropec, A.; Skurnik, D.; Grout, M.; Tsvetkov, Y. E.; Nifantiev, N. E.;
Pier, G. B. Infect. Immun. 2010, 78, 764.
(12) Glycosyl triflates work as thiophilic reagents, which can activate
thioglycoside building block to form 1,6-anhydrosugar.
(13) Li, Z.; Gildersleeve, J. C. J. Am. Chem. Soc. 2006, 128, 11612.
B
Org. Lett., Vol. XX, No. XX, XXXX