Synthesis of 2-Alkylideneisochromans
(isochroman-1-ylidene)
(Scheme 7, path I). The structure of this product was con-
firmed by means of a cyclocarbonylative reaction per-
ethanone
(11)
exclusively
[1] J. M. McCall, R. B. McCall, R. E. Tenbrink, B. V. Kamdsar,
S. J. Humphrey, V. H. Sethy, D. W. Harri, C. Daenzer, J. Med.
Chem. 1982, 25, 75–81.
[2] M. Tobe, T. Tashiro, M. Sasaki, H. Takikawa, Tetrahedron
2007, 63, 9333–9337.
[3] K. Trisuwan, V. Rukachaisirikul, Y. Sukpondma, S. Phong-
paichit, S. Preedanon, J. Sakayaroj, Tetrahedron 2010, 66,
4484–4489.
[4] a) G. I. Togna, A. R. Togna, M. Franconi, C. Marra, M. Gu-
iso, J. Nutr. 2003, 133, 2532–2536; b) A. Bendini, L. Cerretani,
A. Carrasco-Pancorbo, A. M. Gómez-Caravaca, A. Segura-
Carretero, A. Fernández-Gutiérrez, G. Lercker, Molecules
2007, 12, 1679–1719; c) M. Guiso, C. Marra, R. R. Arcos, Nat.
Prod. Res. 2008, 1403–1409.
formed between
1 and 4-iodoaniline (5k; Scheme 7,
path II). In this case, the chemoselective formation of
amino derivative 11 was detected, and the product was iso-
lated in chemically pure form in a good yield (53%). These
results indicate that the Sonogashira cyclocarbonylative
process can take place successfully even in the presence of a
free NH2 group, whereas the NO2 moiety is reduced in situ.
[5] H. G. Cutler, G. Majetich, X. Tian, P. Spearing, J. Agric. Food
Chem. 1997, 45, 1422–1429.
[6] Y. Shishido, H. Wakabayashi, H. Koike, N. Ueno, S. Nukui, T.
Yamagishi, Y. Murata, F. Naganeo, M. Mizutani, K. Shimada,
Y. Fujiwara, A. Sakakibara, O. Suga, R. Kusano, S. Ueda, Y.
Kanai, M. Tsuchiya, K. Satake, Bioorg. Med. Chem. 2008, 16,
7193–7205.
[7] M. P. DeNinno, R. Schoenleber, R. J. Perner, L. Lijewski, K. E.
Asin, D. R. Brittom, R. Mackenzie, J. W. Kebabian, J. Med.
Chem. 1991, 34, 2561–2569.
[8] a) P. P. Pradhan, J. M. Bobbit, W. F. Bailey, J. Org. Chem. 2009,
74, 9524–9527; b) J. Wegner, S. Ceyla, C. Friese, A. Kirschnu-
ing, Eur. J. Org. Chem. 2010, 4372–4375.
Scheme 7. Sonogashira cyclocarbonylative reaction between 2-(2-
ethynylphenyl)ethanol and 4-iodonitrobenzene or 4-iodoianiline.
[9] D. Garcia, F. Foubelo, M. Yus, Eur. J. Org. Chem. 2010, 2893–
2903.
[10] A. Chimirri, G. De Sarro, A. De Sarro, R. Gitto, S. Grasso, S.
Quartatone, M. Zappalà, P. Giusti, V. Libri, A. Constantini,
A. G. Chapman, J. Med. Chem. 1997, 40, 1258–1269.
[11] E. Larghi, T. S. Kaufman, Eur. J. Org. Chem. 2011, 5195–5231
and references cited therein.
Conclusions
We developed a new approach for the synthesis of alkyl-
ideneisochromans through
a Pd-catalyzed copper-free
[12] a) M. Guiso, C. Marra, C. Cavarischia, Tetrahedron Lett. 2001,
42, 6531–6534; b) M. Guiso, a. Bianco, C. Marra, C. Cavaris-
chia, Eur. J. Org. Chem. 2003, 3407–3411; c) M. Guiso, A. Be-
trow, C. Marra, Eur. J. Org. Chem. 2008, 1967–1976.
[13] P. Lorenz, M. Zeh, J. Martens-lobenhoffer, H. Schmidt, G.
Wolf, T. F. W. Horn, Free Radical Res. 2005, 39, 535–545.
[14] Saito, M. Takayama, A. Yamazaki, J. Numaguchi, Y. Han-
zawa, Tetrahedron 2007, 63, 4039–4047.
[15] a) R. Bernini, F. Crisante, G. Fabrizi, P. Gentili, Curr. Org.
Chem. 2012, 16, 1051–1057; b) R. C. Simon, E. Busto, N. Rich-
ter, F. Belaj, W. Kroutil, Eur. J. Org. Chem. 2014, 111–121.
[16] A. Hegedus, Z. Hell, Org. Biomol. Chem. 2006, 4, 1220–1222.
[17] B. Buoguerne, P. Hoffmann, C. Lherbet, Synth. Commun. 2010,
40, 915–926.
cyclocarbonylative coupling reaction. This tandem process
involves a carbonylative Sonogashira reaction between a
suitable ethynyl alcohol and iodoarenes followed by a spon-
taneous cyclization process. The reaction proceeds with
complete regio- and stereoselectivity towards the exclusive
formation of the six-membered isochroman derivatives with
a (Z)-s-cis configuration of the double bonds, and aryl iod-
ides possessing electron-withdrawing and electron-donating
groups can be successfully employed.
[18] M. Dalmacco, L. Degennaro, S. Florio, R. Luisi, B. Musio, A.
Altomare, J. Org. Chem. 2009, 74, 6319–6322.
[19] a) A. Salomone, F. M. Perna, F. C. Sassone, A. Falcicchio, J.
Bezensek, J. Svete, B. Stanovnik, S. Florio, V. Capriati, J. Org.
Chem. 2013, 78, 11059–11065; b) S. Florio, Synlett 2013, 24,
1061–1085.
Experimental Section
Typical Procedure for the Synthesis of (Z)-2-(Isochroman-1-ylidene)-
1-phenyletanone (6a): A Pyrex Schlenk tube was charged with 2-
(2-ethynylphenyl)ethanol (0.292 g, 2 mmol), iodobenzene (0.22 mL,
2 mmol), and Et3N (5 mL). This solution was introduced by a steel
siphon into the autoclave, previously charged with PdCl2(PPh3)2
(2.91 mg, 0.004 mmol) and placed under vacuum (13.3 Pa). The re-
actor was pressurized with CO (2.0 MPa), and the mixture was
stirred for 24 h at 100 °C. After removal of the excess amount of
CO (fume hood), the mixture was diluted with CH2Cl2, filtered
through Celite, and concentrated under vacuum. The crude prod-
uct was purified by column chromatography (silica gel 60, 230–
400 mesh, CHCl3) to yield 6a (0.446 g, 1.78 mmol, 89%) and
3-[2-(2-phenoxyethyl)phenyl]-1-phenyl-2-yn-1-one (7a; 0.034 g,
0.1 mmol, 5%).
[20] C. V. Ramana, S. B. Suryawanshi, Tetrahedron Lett. 2008, 49,
445–448.
[21] S. B. Suryawanshi, M. P. Dushing, R. G. Gonnade, C. V. Ram-
ana, Tetrahedron 2010, 66, 6085–6096.
[22] M. Leibeling, D. C. Koester, M. Pawliczek, D. Kratzert, B. Dit-
trich, D. B. Werz, Bioorg. Med. Chem. 2010, 18, 3656–3667.
[23]
E. M. Mutlane, J. P. Michael, I. R. Green, C. B. de Koning,
Org. Biomol. Chem. 2004, 2, 2461–2470.
P. Liu, L. Huang, Y. Lu, M. Dilmeghani, J. Baum, T. Xiang,
J. Adams, A. Tasker, R. Larsen, M. M. Faul, Tetrahedron Lett.
2007, 48, 2307–2310.
[24]
[25]
[26]
S. Ueno, M. Ohtsubo, R. Kuwano, Org. Lett. 2010, 12, 4332–
Supporting Information (see footnote on the first page of this arti-
4334.
cle): Detailed experimental procedures, spectroscopic data, and
X. F. Wu, H. Neumann, M. Beller, Chem. Rev. 2013, 113, 1–
35.
1
copies of the H NMR and 13C NMR spectra
Eur. J. Org. Chem. 2014, 6858–6862
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
6861