Weibo Yang et al.
COMMUNICATIONS
1371; Angew. Chem. Int. Ed. 2013, 52, 1329–1332;
c) X.-Z. Shu, D. Shu, C. M. Schienebeck, W. Tang,
Chem. Soc. Rev. 2012, 41, 7698–7711.
In summary, an unprecedented Pt-catalyzed formal
[3+3]cycloaddition reaction was explored. This novel
transformation involves the nitrone 1,3-dipole as trap-
ping reagent for a,b-unsaturated carbenes generated
in situ from propargylic ether derivatives. Notably,
this work not only extends the Pt-catalyzed intermo-
lecular [n+m]cycloaddition reactivity mode,[11] but
also opens up new perspectives for synthetic applica-
[3] a) M. P. Doyle, M. A. McKervey, T. Ye, Modern Cata-
lytic Methods for Organic Synthesis with Diazo Com-
pounds: From Cyclopropanes to Ylides, Wiley-Inter-
science, New York, 1998; b) H. M. L. Davies, J. R.
Denton, Chem. Soc. Rev. 2009, 38, 3061–3071.
[4] a) K. Saito, H. Sogou, T. Suga, H. Kusama, N. Iwasawa,
J. Am. Chem. Soc. 2011, 133, 689–691; for related work,
see: b) H. Kusama, Y. Miyashita, J. Takaya, N. Iwasa-
wa, Org.Lett. 2006, 8, 289–292; c) H. Kusama, M. Ebi-
sawa, H. Funami, N. Iwasawa, J. Am. Chem. Soc. 2009,
131, 16352–16353; d) K. Ishida, H. Kusama, N. Iwasa-
wa, J. Am. Chem. Soc. 2010, 132, 8842–8843.
tions especially for the synthesis of [1,2]oxazino
b]indole derivatives. Importantly, these [1,2]oxazino-
[5,4-b]indole derivatives can easily provide access to
ACHTUNGTNER[NUNG 5,4-
ACHTUNGTRENNUNG
1,4-amino alcohols. Further studies on the other Pt-
catalyzed intermolecular [n+m]cycloaddition modes
and the application of this methodology for the syn-
thesis of natural products are under investigation in
our laboratory.
[5] D. Shu, W. Song, X. Li, W. Tang, Angew. Chem. 2013,
125, 3319–3322; Angew. Chem. Int. Ed. 2013, 52, 3237–
3240.
[6] a) A. S. K. Hashmi, W. Yang, F. Rominger, Adv. Synth.
Catal. 2012, 354, 1273–1279; b) A. S. K. Hashmi, W.
Yang, F. Rominger, Chem. Eur. J. 2012, 18, 6576–6580.
[7] For a review on nitrones as 1,3-dipole reagents for cy-
cloaddition reactions, see: a) K. Rꢄck-Braun, T. H. E.
Freysoldt, F. Wierschem, Chem. Soc. Rev. 2005, 34,
507–516; for subsequent work on this subject: b) F. Car-
dona, A. Goti, Angew. Chem. 2005, 117, 8042–8045;
Angew. Chem. Int. Ed. 2005, 44, 7832–7835; c) F. Liu,
Y. Yu, J. Zhang, Angew. Chem. 2009, 121, 5613–5616;
Angew. Chem. Int. Ed. 2009, 48, 5505–5508; d) F. Liu,
D. Qian, L. Li, X. Zhao, J. Zhang, Angew. Chem. 2010,
122, 6819–6822; Angew. Chem. Int. Ed. 2010, 49, 6669–
6672; e) Y. B. Kang, X.-L. Sun, Y. Tang, Angew. Chem.
2007, 119, 3992–3995; Angew. Chem. Int. Ed. 2007, 46,
3918–3921; f) I. S. Young, M. A. Kerr, Angew. Chem.
2003, 115, 3131–3134; Angew. Chem. Int. Ed. 2003, 42,
3023–3026; g) R. Shintani, S. Park, W.-L. Duan, T. Hay-
ashi, Angew. Chem. 2007, 119, 6005–6007; Angew.
Chem. Int. Ed. 2007, 46, 5901–5903; h) S. A. Gawade, S.
Bhunia, R-S. Liu, Angew. Chem. 2012, 124, 7955–7958;
Angew. Chem. Int. Ed. 2012, 51, 7835–7838; i) J. Yang,
Synlett 2012, 23, 2293–2297; j) for the platinum-cata-
lyzed reaction involving nitrones, see: S. Bhunia, C.-J.
Chang, R.-S. Liu, Org. Lett. 2012, 14, 5522–5525.
[8] X. Wang, X. Xu, P. Y. Zavalij, M. P. Doyle, J. Am.
Chem. Soc. 2011, 133, 16402–16405.
Experimental Section
tert-Butyl 1-(3-Nitrophenyl)-2-phenyl-1,2-dihydro-
[1,2]oxazino
ACHTUNGTRENNUNG[5,4-b]indole-5(4H)-carboxylate (3a);
Typical Procedure
To
a mixture of PtCl2 (2.7 mg, 0.01 mmol, 10 mol%),
P
ACHTUNGTRENNUNG
0.15 mmol) was added dry dioxane (0.5 mL). After the mix-
ture had been stirred for 5 min, a 1,4-dioxane solution
(0.5 mL) of 1a (26.1 mg, 0.10 mmol) and (Z)-N-(3-nitroben-
zylidene)aniline oxide (48.0 mg, 0.20 mmol) was added to
the mixture. After the mixture had been stirred at 808C for
3 h and removal of the solvent under vacuum, the residue
was purified by column chromatography (petrol ether-ethyl
acetate: 10/1) to give the desired product; yield: 40.4 mg
(86%).
Acknowledgements
W. Yang, T. Wang, Y. Yu, S. Shi and T. Zhang are grateful to
the CSC for fellowships. Gold salts were generously donated
by Umicore AG & Co. KG.
[9] a) P. Agarwala, J. v. der Weijdena, E. M. Slettena, D.
Rabukab, C. R. Bertozzi, Proc. Natl. Acad. Sci. USA
2013, 110, 46–51; b) Z.-Q. He, Q. Zhou, L. Wu, Y.-C.
Chen, Adv. Synth. Catal. 2010, 352, 1904–1908.
[10] Y. H. Jung, J. D. Kim, Arch. Pharmacal Res. 2005, 28,
382–390.
[11] a) For PtCl2-catalyzed [6+2]cycloadditions, see: A. Te-
naglia, S. Gaillard, Angew. Chem. 2008, 120, 2488–2491;
Angew. Chem. Int. Ed. 2008, 47, 2454–2457; b) PtCl2-
References
[1] a) A. Das, S. Md, A. Sohel, R.-S. Liu, Org. Biomol.
Chem. 2010, 8, 960–979; b) F. Lꢃpez, J. L. MascareÇas,
Beilstein J. Org. Chem. 2011, 7, 1075–1094; c) D. Ga-
rayalde, C. Nevado, ACS Catal. 2012, 2, 1462–1479;
d) A. S. K. Hashmi, E. Kurpejovic, W. Frey, J. W. Bats,
Tetrahedron 2007, 63, 5879–5885; e) A. S. K. Hashmi,
T. M. Frost, J. W. Bats, Org. Lett. 2001, 3, 3769–3771.
[2] a) D. F. Toste, in: Modern Gold Catalyzed Synthesis,
(Eds.: A. S. K. Hashmi, F. D. Toste), Wiley-VCH, Wein-
heim, 2012, Chap. 4, pp 75–134, and references cited
therein; for new developments, see: b) A. S. K.
Hashmi, W. Yang, Y. Yu, M. M. Hansmann, M. Ru-
dolph, F. Rominger, Angew. Chem. 2013, 125, 1368–
catalyzed [2+1]/ACTHNUTRGNEUNG[3+2]cycloadditions, see: T. Achard,
A. Lepronier, Y. Gimbert, H. Clavier, L. Giordano, A.
Tenaglia, G. Buono, Angew. Chem. 2011, 123, 3614–
3618; Angew. Chem. Int. Ed. 2011, 50, 3552–3556;
c) PtCl2-catalyzed [2+2]-cycloadditions, see: M. Ebisa-
wa, H. Kusama, N. Iwasawa, Chem. Lett. 2012, 41, 786–
788; d) PtCl2-catalyzed [4+3]cycloaddtions, see ref.[5]
1528
ꢂ 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2013, 355, 1523 – 1528