10.1002/anie.201901346
Angewandte Chemie International Edition
glycosyl bromide. Efforts to utilize this method to enable other
glycosidic bonds are underway.
[1] (a) K. Ohtsubo, J. D. Marth, Cell. 2016, 126, 855-867; (b) Y. van Kooyk,
G. Rabinovich, Nat. Immunol. 2008, 9, 593-601.
[2] (a) M. J. McKay, H. M. Nguyen, ACS Catal. 2012, 2, 1563 -1595; (b) M.
M. Nielsen, C. M. Pedersen, Chem. Rev. 2018, 118, 8285-8358.
[3] W.-L. Leng, H. Yao, J.-X. He, X-W. Liu. Acc. Chem. Res. 2018, 51, 628-
639.
[4] (a) J.-H. Kim, H. Yang, G.-J. Boons, Angew. Chem. Int. 2005, 44, 947-
949; (b) J.-H. Kim, H. Yang, J. Park, G.-J. Boons, J. Am. Chem. Soc. 2005,
127, 12090-12097; (c) J. P. Yasomanee, A. V. Demchenko, J. Am. Chem. Soc.
2012, 134, 20097-20102; (d) J. P. Yasomanee, A. V. Demchenko, Angew.
Chem. Int. Ed. 2014, 53, 10453-10456.
. Identification of
A
β
-phenanthrolium ion using mass spectrometry
AcO
AcO
AcO
Ph
4
O
(3 equiv.)
2
, IBO
N
MTBE (c = 0.5 M)
50 o
-
α
3
BnO
50 o
1
C, 1 h
> 20:1)
C, 24 h
N
α
:
Br
50% (
β
41
m/z = 711.2710
C
Ph
43H39N2O8
[5] (a) Y. Geng, A. Kumar, H. M. Faidallah, H. A. Albar, I. A. Mhkalid, R. R.
Schmidt; Angew. Chem. Int. Ed. 2013, 52, 10089-10092; (b) S. Buda, M.
Mawoj, P. Golebiowska, K. Dyduch, A. Michalak, J. Mlynarski, J. Org.
Chem. 2015, 80, 770-780; (c) P. Peng, R. R. Schmidt, J. Am. Chem. Soc. 2015,
137, 12653-12659; (d) T. Kimura, T. Eto, D. Takahashi, K. Toshima, Org.
Lett. 2016, 18, 3190-3193; (e) L. Sun, X. Wu, D.-C. Xiong, X.-S. Ye, Angew.
Chem. Int. Ed. 2016, 55, 8041-8044; (f) Y. Park, K. C. Harper, N. Kuhl, E. E.
Kwan, R. Y. Liu, E. N. Jacobsen, Science. 2017, 355, 162-166.
[6] L. L. Lairson, B. Henrissat, G. J. Davies, S. G. Withers, Annu. Rev.
Biochem. 2008, 77, 521-555.
[7] (a) R. U. Lemieux, A. R. Morgan, J. Am. Chem. Soc. 1963, 85, 1889-1890.
(b) R. U. Lemieux, A. R. Morgan, Can. J. Chem. 1965, 43, 2205-2213.
[8] B. A. Garcia, D. Y. Gin, J. Am. Chem. Soc. 2000, 122, 4269-4279.
[9] G. Lanz, R. Madsen, Eur. J. Org. Chem. 2016, 3119-3125.
[10] A. C. Spivey, S. Arseniyadis, Angew. Chem. Int. Ed. 2004, 43, 5436-
5441.
. Effect of glycosyl bromide configuration
B
4
2
(15 mol%)
(1.3 equiv)
(15 mol%)
AcO
4
O
+
1
3
AcO
1
Br CDCl
CDCl
oC,
oC,
AcO
3, 25
1 h
3, 25
2 h
88%
<1%
BnO
42
= 1:5)
α
:
β
(
Kinetics of the reaction of 2-propanol with
in C
at 50 o
α
C.
1
6D6
(0.5 M)
-bromide
C
(0.5 M)
1
1
C-1:
2-propanol (0.25 - 3.5 M)
IBO (1 M)
2-propanol (1.5 M)
IBO (1 M)
C-2:
4
(15 mol%)
4
(0 - 20 mol %)
0.003
0.003
0.002
0.001
0.000
0.002
0.001
0.000
R2 = 0.9468
R2 = 0.9969
[11] S. S. Nigudkar, K. J. Stine, A. V. Demchenko, J. Am. Chem. Soc. 2014,
136, 921-923.
[12] S. Chatterjee, S. Moon, F. Hentschel, K. Gilmore, P. H. Seeberger, J. Am.
Chem. Soc. 2018, 140, 11942-11953.
[13] S. R. Lu, Y. H. Lai, J. H. Chen, C. Y. Liu, K. K. T. Mong, Angew. Chem.
Int. Ed. 2011, 50, 7315-7320.
0.00
0.05
0.10
0.15
0
1
2
3
4
[2-propanol] (M)
[Catalyst 4] (M)
. DFT calculations of anomeric phenanthrolinium and pyridinium ions
D
[14] D. Vasudevan, H. Takeuchi, S. S. Johar, E. Majerus, R. S. Haltiwanger,
Curr. Biol. 2015, 25, 286-295.
[15] P. C. Gao, S. Y. Zhu, H. Cao, J. S. Yang, J. Am. Chem. Soc. 2016, 138,
1684-1688.
[16] M. R. Pratt, C. R. Bertozzi, Chem. Soc. Rev. 2005, 34, 58-68.
[17] S. D. Kuduk, J. B. Schwarz, X.-T. Chen, P. W. Glunz, D. Sames, G.
Ragupathi, P. O. Livingston, S. J. Danishefsky, J. Am. Chem. Soc. 1998, 120,
12474-12485.
Br
N1
O
N
N
C1
MeO
137o
O
N2
H1
MeO
Br
non-covalent interaction
1.964 Å
43
[18] (a) C. Bucher, R. Gilmour, Angew. Chem. Int. Ed. 2010, 49, 8724-8728;
(b) E. Durantie, C. Bucher, R. Gilmour, Chem. Eur. J. 2012, 18, 8208-8215.
[19] X. Chen, Adv. Carbohydr. Chem. Biochem 2015, 72, 113-190.
[20] (a) A. L. van Bueren, M. Higgins, D. Wang, R. D. Burke, A. B. Boraston,
Nat. Struct. Mol. Biol. 2007, 14, 76-84; (b) V. C. B. Bittencourt, R. T.
Figueiredo, R. B. da Silva, D. S. Mourao-Sa, P. L. Fernandez, G. L. Sassaki,
B. Mulloy, M. T. Bozza, E. B. Barreto-Bergter, J. Biol. Chem. 2006, 281,
22614-22623.
Br
N
O
O
N
C
MeO
MeO
Br
H
43
[21] Y. Cao, Y. Okada, H. Yamada, H. Carbohydr. Res. 2006, 341, 2219-
2223.
Figure 1. Mechanistic studies.
[22] Fragmentation of 41 using collision induced dissociation led to formation
of phenanthroline with an m/z ratio of 333.1396 (Figure S8).
[23] Y. Singh, T. H. Wang, S. A. Geringer, K. J. Stine, A. V. Demchenko, J.
Org. Chem. 2018, 83, 374-38.
[24] R. U. Lemieux, K. B. Hendriks, R. V. Stick, K. James. J. Am. Chem. Soc.
1975, 97, 4056-4062.
Acknowledgements
We are grateful for financial support from the National Institutes
of Health (U01 GM120293). We thank Profs. David Crich (Wayne
State) and Daniel Quinn (Iowa) for suggestions with kinetic studies
as well as the Lumigen Center for instrumental assistance.
[25] β-42 rapidly converted into α-1 in the presence of catalyst 4 within 15
min at 50 oC.
[26] Coupling of 2 with β-bromide 42 under standard conditions provided 3
in comparable yield and α-selectivity to that obtained with α-bromide 1.
[27] The α:β ratio of product 3 is kinetically-derived and is not reflective of a
thermodynamic distribution arising from post-coupling isomerization (Figure
S9).
[28] E. R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras-Garcia, A. J.
Cohen, W. Yang, J. Am. Chem. Soc. 2010, 132, 6498-6506.
[29] The optimized geometry of the transition state shows that because of the
back-side displacement nature of the SN2 transition state, the distance is too
large for any stabilizing interaction between the hydrogen of the alcohol and
the nitrogen of phenanthroline (Figure S17).
Conflict of interest
The authors declare no conflict of interest.
Received: ((will be filled in by the editorial staff))
Published online on ((will be filled in by the editorial staff))
Keywords: organocatalysis ·glycosylation · stereoselectivity ·
oligosaccharides · mechanism
4
This article is protected by copyright. All rights reserved.