Journal of the American Chemical Society
Communication
(9) As this manuscript was in preparation, a report appeared
demonstrating the preparation of predominately cis-vinyl silyl ethers
from terminal alkenes using iridium-catalyzed hydrosilylation and a
sacrificial oxidant: Cheng, C.; Simmons, E. M.; Hartwig, J. F. Angew.
Chem., Int. Ed. 2013, 52, 8984−8989.
(10) McAtee, J. R.; Martin, S. E. S.; Ahneman, D. T.; Johnson, K. A.;
Watson, D. A. Angew. Chem., Int. Ed. 2012, 51, 3663−3667.
(11) Tanaka has demonstrated the oxidative addition of Pt(0)
complexes to dichlorosilanes in stoichiometric reactions: Yamashita,
H.; Tanaka, M.; Goto, M. Organometallics 1997, 16, 4696−4704.
(12) Matyjaszewski, K.; Chen, Y. L. J. Organomet. Chem. 1988, 340,
7−12.
exhibits broad functional group tolerance, and products are
generated in good to excellent isolated yields and as single
regiomeric and geometric isomers. The reaction proceeds with
readily accessible reagents and an inexpensive, commercially
available catalyst. Not only does this reaction dramatically
expand the utility of the silyl-Heck reaction by allowing access
to a wide variety of highly useful vinyl silyl ethers and related
reagents, for the first time, it demonstrates that silane
(bis)electrophiles can be used in a Heck-type process. Future
studies will be directed toward expanding this transformation to
other classes of alkenes and related molecules.
(13) This reagent is easily prepared from the reaction of neat
Ph2SiMe2 and TfOH. It can be stored under nitrogen indefinitely after
removal of the resulting PhH under vacuum, or used directly without
diminished yield in the silyl-Heck reaction. See Supporting
Information.
(14) We believe iodide additives result in in situ generation of Si-I
species, which enable oxidtive addition: Olah, G. A.; Narang, S. C.;
Gupta, B. G. B.; Malhotra, R. J. Org. Chem. 1979, 44, 1247−1251.
(15) Terminal alkenes bearing allylic hydrogen atoms are also
reactive but give poor allyl vs vinyl selectivity. See Supporting
Information for an example.
(16) Gietter, A. A. S.; Pupillo, R. C.; Yap, G. P. A.; Beebe, T. P.;
Rosenthal, J.; Watson, D. A. Chem. Sci. 2013, 4, 437−443.
(17) (a) Gros, W. A. Benzocyclobutene-based Die Attach Adhesive
Compositions. U.S. Patent 4759874, 1988. (b) Kirchhoff, R. A.; Bruza,
K. J. Prog. Polym. Sci. 1993, 18, 85−185.
(18) Lim, D. S. W.; Anderson, E. A. Org. Lett. 2011, 13, 4806−4809.
(19) Some reactivity was also observed with diisopropylsilyl ditriflate.
However, the yields remain low with the present catalyst system.
(20) (a) Fristrup, P.; Le Quement, S.; Tanner, D.; Norrby, P.-O.
Organometallics 2004, 23, 6160−6165. (b) Oestreich, M., The
Mizoroki−Heck Reaction; John Wiley & Sons: Chichester, UK, 2008.
(21) With the use of phenyl iodide, selectivity is only marginally
better in this reaction (90:10 β:α).
ASSOCIATED CONTENT
* Supporting Information
Experimental procedures and spectral data. This material is
■
S
AUTHOR INFORMATION
Corresponding Author
Notes
■
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Mr. Scott Shuler is thanked for assistance. The University of
Delaware (UD), the NSF (CAREER CHE1254360), and the
Research Corporation (Cottrell Scholars Program) are grate-
fully acknowledged. S.E.S.M. acknowledges graduate fellowship
support from NIH 5T32 GM 08550-16. Data were acquired at
UD on instruments obtained with the assistance of NSF and
NIH funding (NSF CHE0421224, CHE1229234, and
CHE0840401; NIH P20 GM103541 and S10 RR02692).
Dedicated to Professor Larry E. Overman on the occasion of
his 70th birthday.
(22) (a) Denmark, S. E.; Sweis, R. F. Org. Lett. 2002, 4, 3771−3774.
(b) Denmark, S. E.; Regens, C. S. Tetrahedron Lett. 2011, 52, 2165−
2168.
(23) Bennetau, B., Benzylsilanes. In Science of Synthesis; Fleming, I.,
Ed.; Thieme: Stuttgart, 2002; Vol. 4, pp 825−836.
REFERENCES
■
(1) (a) Fleming, I.; Barbero, A.; Walter, D. Chem. Rev. 1997, 97,
2063−2192. (b) Brook, M. A., Silicon in Organic, Organometallic, and
Polymer Chemistry; Wiley: Chichester, 2000. (c) Fleming, I.;
̀
Dunogues, J.; Smithers, R. The Electrophilic Substitution of
Allylsilanes and Vinylsilanes. In Organic Reactions; John Wiley &
Sons, Inc.: New York, 2004; pp 57−575.
(2) Nakao, Y.; Hiyama, T. Chem. Soc. Rev. 2011, 40, 4893−4901.
(3) (a) Denmark, S. E.; Regens, C. S. Acc. Chem. Res. 2008, 41,
1486−1499. (b) Denmark, S. E.; Liu, J. H. C. Angew. Chem., Int. Ed.
2010, 49, 2978−2986. (c) Sore, H. F.; Galloway, W. R. J. D.; Spring,
D. R. Chem. Soc. Rev. 2012, 41, 1845−1866.
(4) Jones, G. R.; Landais, Y. Tetrahedron 1996, 52, 7599−7662.
(5) (a) Oshima, K. Vinylsilanes. In Science of Synthesis; Fleming, I.,
Ed.; Thieme: Stuttgart, 2001; Vol. 4, pp 713−754. (b) Denmark, S. E.;
Neuville, L.; Christy, M. E. L.; Tymonko, S. A. J. Org. Chem. 2006, 71,
8500−8509.
(6) (a) Denmark, S. E.; Wang, Z. Org. Lett. 2001, 3, 1073−1076.
(b) Trost, B. M.; Ball, Z. T. J. Am. Chem. Soc. 2005, 127, 17644−
17655.
(7) Corbet, J.-P.; Mignani, G. Chem. Rev. 2006, 106, 2651−2710.
(8) Intramolecular alkene metathesis has been used to effectively
prepare cyclic vinylsiloxy ethers; however, the intermolecular version
of the reaction remains much less studied and is highly dependent on
the nature of the starting alkenes: (a) Pietraszuk, C.; Fischer, H.;
Rogalski, S.; Marciniec, B. J. Organomet. Chem. 2005, 690, 5912−5921.
(b) Denmark, S. E.; Yang, S.-M. Org. Lett. 2001, 3, 1749−1752. For a
related reaction see: (c) Wakatsuki, Y.; Yamazaki, H.; Nakano, M.;
Yamamoto, Y. J. Chem. Soc., Chem. Commun. 1991, 703−704. Also see
ref 3b.
D
dx.doi.org/10.1021/ja407748z | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX