RSC Advances
Paper
4 (a) A. Pasternak and J. Wengel, Bioorg. Med. Chem. Lett.,
2011, 21, 752–755; (b) T. B. Jensen, J. R. Henriksen, B.
E. Rasmussen, L. M. Rasmussen, T. L. Andresen, J. Wengel
and A. Pasternak, Bioorg. Med. Chem., 2011, 19, 4739–4745.
5 N. Kumar, J. T. Nielsen, S. Maiti and M. Petersen, Angew.
Chem., Int. Ed., 2007, 46, 9220–9222.
6 (a) B. Datta, C. Schmitt and B. A. Armitage, J. Am. Chem.
Soc., 2003, 125, 4111–4118; (b) B. Datta, M. E. Bier, S. Roy
and B. A. Armitage, J. Am. Chem. Soc., 2005, 127, 4199–4207;
(c) A. Paul, P. Sengupta, Y. Krishnan and S. Ladame,
Chem.–Eur. J., 2008, 14, 8682–8689; (d) N. K. Sharma and K.
N. Ganesh, Chem. Commun., 2005, 4330–4332; (e) S. Modi,
A. H. Wani and Y. Krishnan, Nucleic Acids Res., 2006, 34,
4354–4363.
Conclusions
In conclusion, we report the synthesis and construction of a
BuNA-based A-switch. CD studies suggested that the (S)-BuNA
duplex forms a left handed A-form-like structure at pH 7 and
the incorporation of (S)-BuNA nucleotides does not alter the
B-form helical structure of the DNA duplexes. UV and CD-
melting studies revealed a highly stable structure of the
A-motif. Furthermore, MALDI-TOF-MS experiments proved
that the A-motif is assembled of two BuNA strands. Due to
the chemical stability of BuNA at low pH, we were able to
calculate thermodynamic parameters, where the DG value for
the formation of the A-motif structure was determined to be
214.8 kcal mol21 (pH 4.0, 37 uC). In the future these findings
might provide a new platform for developing acyclic nucleic
acids-based molecular devices. Further studies are going on to
construct BuNA-based i-switches and G-quadruplexes.
7 L. Lacroix and J.-L. Mergny, Arch. Biochem. Biophys., 2000,
381, 153–163.
8 K. Kanaori, S. Sakamoto, H. Yoshida, P. Guga, W. Stec,
K. Tajima and K. Makino, Biochemistry, 2004, 43,
5672–5679.
9 J. A. Brazier, J. Fisher and R. Cosstick, Angew. Chem., Int.
Ed., 2006, 45, 114–117.
Acknowledgements
10 (a) C. Mao, W. Sun, Z. Shen and N. C. Seeman, Nature,
1999, 397, 144–146; (b) A. Rajendran, M. Endo, K. Hidaka
and H. Sugiyama, J. Am. Chem. Soc., 2013, 135, 1117–1123.
11 (a) S. A. Benner, Science, 2004, 306, 625–626; (b) S.
A. Benner, Acc. Chem. Res., 2004, 37, 784–797; (c) V.
B. Pinheiro and P. Holliger, Curr. Opin. Chem. Biol., 2012,
16, 245–252.
The authors acknowledge financial support from the DBT and
ICMR, Govt. of India (BT/PR/10064/AGR/36/30/07). The
authors gratefully thank department of Chemistry IIT
Madras, SAIF-IIT Madras for analytical data. Vipin thanks IIT
Madras for fellowship. Vipin thanks to Prof. Yamuna
Krishnan’s research group from National Center for
Biological Sciences (NCBS) India, for valuable discussion
about DNA-based A-motif. Vipin thanks to Dr David Schaffert
from Interdisciplinary Nanoscience Center-INANO-MBG,
Aarhus University for proof reading of manuscript.
¨
12 (a) K.-U. Schoning, P. Scholz, S. Guntha, X. Wu,
R. Krishnamurthy and A. Eschenmoser, Science, 2000,
290, 1347–1351; (b) V. B. Pinheiro, A. I. Taylor, C. Cozens,
M. Abramov, M. Renders, S. Zhang, J. C. Chaput, J. Wengel,
S.-Y. Peak-Chew, S. H. McLaughlin, P. Herdewijn and
P. Holliger, Science, 2012, 336, 341–344.
13 (a) K. C. Schneider and S. A. Benner, J. Am. Chem. Soc., 1990,
´
112, 453–455; (b) Y. Merle, E. Bonneil, L. Merle, J. Sagi and
References
¨
A. Szemzo, Int. J. Biol. Macromol., 1995, 17, 239–246; (c) K.
1 (a) J. Bath and A. J. Turberfield, Nat. Nanotechnol., 2007, 2,
275–284; (b) M. M. Maye, M. T. Kumara, D. Nykypanchuk,
W. B. Sherman and O. Gang, Nat. Nanotechnol., 2009, 5,
116–120; (c) A. Rajendran, M. Endo, Y. Katsuda, K. Hidaka
and H. Sugiyama, J. Am. Chem. Soc., 2011, 133,
14488–14491; (d) A. V. Pinheiro, D. Han, W. M. Shih and
H. Yan, Nat. Nanotechnol., 2011, 6, 763–772; (e) T. Torring,
N. V. Voigt, J. Nangreave, H. Yan and K. V. Gothelf, Chem.
Soc. Rev., 2011, 40, 5636–5646; (f) D. Ackermann and
M. Famulok, Nucleic Acids Res., 2013, 41, 4729–4739.
2 (a) K. Fukui, M. Morimoto, H. Segawa, K. Tanaka and
T. Shimidzu, Bioconjugate Chem., 1996, 7, 349–355; (b)
H. Asanuma, K. Shirasuka, T. Takarada, H. Kashida and
M. Komiyama, J. Am. Chem. Soc., 2003, 125, 2217–2223.
3 (a) P. Alberti, A. Bourdoncle, B. Sacca, L. Lacroix and J.-
L. Mergny, Org. Biomol. Chem., 2006, 4, 3383–3391; (b)
Y. Sannohe, M. Endo, Y. Katsuda, K. Hidaka and
H. Sugiyama, J. Am. Chem. Soc., 2010, 132, 16311–16313;
(c) A. Rajendran, S.-i. Nakano and N. Sugimoto, Chem.
Commun., 2010, 46, 1299–1301; (d) Y. Krishnan and F.
C. Simmel, Angew. Chem., Int. Ed., 2011, 50, 3124–3156; (e)
J. Choi and T. Majima, Chem. Soc. Rev., 2011, 40,
5893–5909; (f) T. Li and M. Famulok, J. Am. Chem. Soc.,
2013, 135, 1539–1599.
S. Ramasamy and W. Seifert, Bioorg. Med. Chem. Lett., 1996,
6, 1799–1804; (d) J. J. Chen, X. Cai and J. W. Szostak, J. Am.
Chem. Soc., 2009, 131, 2119–2121; (e) E. Meggers and
L. Zhang, Acc. Chem. Res., 2010, 43, 1092–1102; (f) P. Karri,
V. Punna, K. Kim and R. Krishnamurthy, Angew. Chem., Int.
Ed., 2013, 52, 5840–5844.
14 (a) P. Nielsen, M. Egholm, R. Berg and O. Buchardt, Science,
1991, 254, 1497–1500; (b) M. Egholm, O. Buchardt,
L. Christensen, C. Behrens, S. M. Freier, D. A. Driver, R.
H. Berg, S. K. Kim, B. Norden and P. E. Nielsen, Nature, 1993,
365, 566–568.
15 (a) P. Nielsen, L. H. Dreiøe and J. Wengel, Bioorg. Med.
Chem., 1995, 3, 19–28; (b) H. Kashida, X. Liang and
H. Asanuma, Curr. Org. Chem., 2009, 13, 1065–1084.
16 (a) L. Zhang, A. Peritz and E. Meggers, J. Am. Chem. Soc.,
2005, 127, 4174–4175; (b) R. S. Zhang, E. O. McCullum and
J. C. Chaput, J. Am. Chem. Soc., 2008, 130, 5846–5847.
17 (a) H. Asanuma, T. Toda, K. Murayama, X. Liang and
H. Kashida, J. Am. Chem. Soc., 2010, 132, 14702–14703; (b)
H. Kashida, K. Murayama, T. Toda and H. Asanuma,
Angew. Chem., Int. Ed., 2011, 50, 1285–1288.
18 (a) H. Asanuma, M. Akahane, N. Kondo, T. Osawa, T. Kato
and H. Kashida, Chem. Sci., 2012, 3, 3165–3169; (b) T. Kato,
This journal is ß The Royal Society of Chemistry 2013
RSC Adv., 2013, 3, 19330–19340 | 19339