Job/Unit: O21445
/KAP1
Date: 07-01-13 10:38:29
Pages: 7
Cu-Catalyzed Synthesis of N,N-Diarylhydrazines
In view of the fact that the second arylation of pyridine- groups of substrates in metal-catalyzed coupling reactions,
2-carbaldehyde hydrazone (3) proceeds more rapidly than which can be exploited in future studies. The mechanism of
the first, we attempted to transform hydrazone 3 directly the reaction is under investigation and the results will be
into N,N-diarylhydrazones by using a 2:1 molar ratio of reported in due course.
aryl iodide/hydrazone 3 in the coupling reaction (Table 5);
Supporting Information (see footnote on the first page of this arti-
several aryl iodides were chosen as arylating agents. We
cle): Experimental details and characterization data for all com-
found that the diarylation reaction did not provide high
pounds prepared.
yields of the desired products 4a–d, mainly because there
exists a competing ring-closing side-reaction of the starting
hydrazone 3.[13] In the case of o-iodoanisole (4e), steric fac-
tors further lower the yield of the diarylated product with
Acknowledgments
appreciable amounts of the monoarylated product formed.
We then turned our attention to the cleavage of the pro-
tecting group in pyridine-2-carbaldehyde N,N-diarylhydraz-
ones to release the corresponding N,N-diarylhydrazines. For
this, acidic hydrolysis of the aldehyde/ketone hydrazones is
the most commonly employed procedure. Unfortunately, we
found that even strong acids such as hydrochloric acid or
p-toluenesulfonic acid failed to hydrolyze pyridine-2-carbal-
dehyde N,N-diarylhydrazones to release the corresponding
diarylhydrazines. However, N,N-diarylhydrazines can read-
The authors thank National Natural Science Foundation of China
(NSFC) (project number 20872142) for financial support of this
work.
[1] a) T. Sasikumar, D. Burnett, H. Zhang, A. Amith-Torhan, A.
Fawzi, J. Lachowicz, Bioorg. Med. Chem. Lett. 2006, 16, 4543;
b) S. Hong, S. Bavadekar, S. Lee, P. Patil, S. Lalchandani, D.
Feller, D. Miller, Bioorg. Med. Chem. Lett. 2005, 15, 4691; c) N.
Hamanaka, K. Takahashi, Y. Nagao, K. Torisu, S. Shigeoka, S.
Hamada, H. Kato, H. Tokumoto, K. Kondo, Bioorg. Med.
Chem. Lett. 1995, 5, 1087.
ily be freed by transimination of the hydrazones with [2] a) P. C. Unangst, M. E. Carethers, W. Webster, G. M. Janik,
L. J. Robichaud, J. Med. Chem. 1984, 27, 1629; b) E. J.
H2NNH2 (Table 6). Several pyridine-2-carbaldehyde N,N-
Glamkowski, J. M. Fortunato, J. F. Spaulding, J. C. Wilker,
diarylhydrazones were treated with an aqueous solution of
D. B. Ellis, J. Med. Chem. 1985, 28, 66; c) E. Angerer, J.
H2NNH2 with complete conversion (Table 6).
Strohmeier, J. Med. Chem. 1987, 30, 131; d) P. C. Unangst,
D. T. Connor, S. R. Stabler, R. J. Weikert, M. E. Carethers,
Table 6. Release of N,N-diaryhydrazines from pyridine-2-carbal-
J. A. Kennedy, D. O. Thueson, J. C. Chestnut, R. L.
Adolphson, M. C. Conroy, J. Med. Chem. 1989, 32, 1360; e) J.
dehyde diarylhydrazones.[a]
Perregaard, J. Arnt, K. P. Bogeso, J. Hyttel, C. Sanchez, J. Med.
Chem. 1992, 35, 1090.
[3] B. Robinson, The Fischer Indole Synthesis Wiley, Chichester,
UK, 1982.
[4] a) P. Strohriegl, J. V. Grazulevicius, Adv. Mater. 2002, 14, 1439;
b) K. Nishimura, T. Kobata, H. Inada, Y. Shirota, J. Mater.
Chem. 1991, 1, 897.
[5] a) R. H. Poirer, F. Benington, J. Am. Chem. Soc. 1952, 74,
3192; b) A. S. S. Peter, W. K. Norman, J. Org. Chem. 1958, 23,
1599; c) I. D. Entwistle, B. A. W. Johnstone, A. H. Wilby, Tet-
rahedron 1982, 38, 419.
[6] For the palladium-catalyzed N-arylation of benzophe-
nonehydrazone or hydrazine, see: a) S. Wagaw, B. H. Yang,
S. L. Buchwald, J. Am. Chem. Soc. 1998, 120, 6621; b) J. F.
Hartwig, Angew. Chem. Int. Ed. 1998, 37, 2090; c) R. J.
Lundgren, M. Stradiotto, Angew. Chem. Int. Ed. 2010, 49,
[a] Reaction conditions: diarylhydrazone (1 mmol), aqueous hy-
drazine (85%, 2 mL), 2-methoxyethanol (3 mL), reflux, 5–15 h.
8686.
[7] For some other cases involving palladium-catalyzed aromatic
C–N coupling reactions using hydrazine-type substrates, see: a)
J. B. Arterburn, K. V. Rao, R. Ramdas, B. R. Dible, Org. Lett.
2001, 3, 1351; b) Y.-K. Lim, K.-S. Lee, C.-G. Cho, Org. Lett.
2003, 5, 979; c) N. Halland, M. Nazare, J. Alonso, O. RЈkyek,
A. Lindenschmidt, Chem. Commun. 2011, 47, 1042.
[8] a) S. Wagaw, B. H. Yang, S. L. Buchwald, J. Am. Chem. Soc.
1999, 121, 10251; b) A. C. Ferretti, C. Brennan, D. G. Black-
mond, Inorg. Chim. Acta 2011, 369, 292.
[9] For the copper-catalyzed arylation of N-Boc hydrazine, see: a)
M. Wolter, A. Klapars, S. L. Buchwald, Org. Lett. 2001, 3,
3803; b) K.-Y. Kim, J.-T. Shin, K.-S. Lee, C.-G. Cho, Tetrahe-
dron Lett. 2004, 45, 117; c) M. S. Lam, H. W. Lee, A. S. C.
Chan, F. Y. Kwong, Tetrahedron Lett. 2008, 49, 6192; d) L.
Jiang, X. Lu, H. Zhang, Y. Jiang, D. Ma, J. Org. Chem. 2009,
74, 4542.
Conclusions
We have presented an easy route to N,N-diarylhydrazines
by the CuI-catalyzed arylation of pyridine-2-carbaldehyde
hydrazones followed by a hydrazine exchange reaction. Our
protocol offers several advantages over previously used
methods: The simple copper salt works efficiently without
the need for additional ligands, the catalyst is cheaper, lower
loadings are required, and mild bases and relatively mild
reaction temperatures are employed. It is worth noting that
the 2-pyridylmethylene moiety in the hydrazone substrates
serves not only as a “blocking group” for regioselectivity,
but also as a “promoter”, activating the copper precatalyst.
This provides a useful example of the selection of protecting
[10] a) H. Suzuki, A. Yamamoto, J. Chem. Res. Synop. 1992, 280;
b) O. Loog, U. Mäeorg, U. Ragnarsson, Synthesis 2000, 1591;
c) P. Starkov, I. Zemskov, R. Sillard, O. Tsˇubrik, U. Mäeorg,
Tetrahedron Lett. 2007, 48, 1155; d) X. D. Xiong, Y. W. Jiang,
Eur. J. Org. Chem. 0000, 0–0
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
5