Organic & Biomolecular Chemistry
Paper
689 (s), 677 (m), 654 (m), 613 (w). Anal. calcd for C17H12FNO
(265.3): C 76.97, H 4.56, N 5.28; Found: C 76.77, H 4.75,
N 5.03.
Acknowledgements
Scheme 5 CACS synthesis of (2,4-dichlorophenyl)(2-phenyl-1H-pyrrol-3-yl)
methanone (6j) on a 20 mmol scale.
The authors cordially thank the Fonds der Chemischen Indus-
trie for financial support.
diversity could be readily explored. Now the stage is set for
further methodological extensions towards differently N-sub-
stituted aminoacetaldehyde diethylacetals in the Michael step,
which should furnish N-substituted 3-acylpyrrole analogues.
These studies are currently underway.
Notes and references
1 J. Bergman and T. Janosik, Five-Membered Heterocycles:
Pyrrole and Related Systems, in Modern Heterocyclic
Chemistry, ed. J. Alvarez-Builla, J. J. Vaquero and
J. Barluenga, Wiley-VCH, Weinheim, 2011, vol. 1, p. 269;
R. A. Jones, The Chemistry of Heterocyclic Compounds, John
Wiley & Sons. Inc., New York, 1992, vol. 48, part 2;
R. A. Jones and G. P. Bean, The chemistry of pyrroles,
Academic Press, London, 1977; A. Gossauer, Die Chemie der
Pyrrole, Springer Verlag, Berlin, 1974, vol. 47, p. 1098.
2 I. S. Young, P. D. Thornton and A. Thompson, Nat. Prod.
Rep., 2010, 27, 1801; M. d’Ischia, A. Napolitano and
A. Pezzella, Pyrroles and their Benzo Derivatives: Appli-
cations, in Comprehensive Heterocyclic Chemistry III,
Elsevier, Amsterdam, 2008, p. 353; C. T. Walsh, S. Garneau-
Tsodikova and A. R. Howard-Jones, Nat. Prod. Rep., 2006,
23, 517; J. T. Gupton, Top. Heterocyclic Chem., 2006, 2, 53;
H. Falk, The Chemistry of Linear Oligopyrroles and Bile
Pigments, Springer, New York, 1989; R. J. Sundberg,
Pyrroles and their Benzo Derivatives: (iii) Synthesis and
Applications, in Comprehensive Heterocyclic Chemistry, ed.
A. R. Katritzky and C. W. Rees, Pergamon, Oxford, 1984,
vol. 4, p. 313.
Experimental
Typical procedure for the three-component synthesis of
(2-chlorophenyl)(2-phenyl-1H-pyrrol-3-yl)methanone (1b)
Palladium(II) chloride (3.5 mg, 0.02 mmol, 1.0 mol%) and di-
(1-adamantyl)benzylphosphonium hydrobromide (18.9 mg,
0.04 mmol, 2.0 mol%) were placed in a dry Schlenk tube under
an argon atmosphere and dry dichloromethane (2 mL) was
added. 2-Fluorobenzoyl chloride (5b) (360 mg, 2.00 mmol),
phenylacetylene (6a) (209 mg, 2.00 mmol), and reagent grade
triethylamine (0.30 mL, 2.15 mmol) were added to the
mixture, and stirring at room temperature was continued
for 2 h until complete conversion (monitored by TLC). Then,
aminoacetaldehyde diethylacetal (4) (281 mg, 2.07 mmol) was
added and the reaction mixture was stirred for 16 h at 40 °C
(oil bath). Then, the reaction mixture was allowed to cool to
room temperature and methanesulfonic acid (401 mg,
4.13 mmol) was successively added. After stirring for 24 h
at 40 °C (oil bath) the reaction mixture was allowed to cool to
room temperature. The solvents were removed in vacuo and
the residue was purified by flash chromatography on silica gel
(n hexane–ethyl acetate 4 : 1) to give compound 1b as a brown-
ish red solid (265 mg, 50% yield). M.p. 118 °C; 1H NMR
(600 MHz, DMSO-d6, rt): δ = 6.33 (t, J = 2.6 Hz, 1 H), 6.90 (t, J =
2.7 Hz, 1 H), 7.08–7.12 (m, 1 H), 7.15 (t, J = 7.4 Hz, 1 H),
7.25–7.31 (m, 3 H), 7.37–7.43 (m, 2 H), 7.44–7.47 (m, 2 H),
11.87 (s, 1 H). 13C NMR (150 MHz, DMSO-d6, rt): δ = 112.4
3 A. Mai, S. Massa, I. Cerbara, S. Valente, R. Ragno,
P. Bottoni, R. Scatena, P. Loidl and G. Brosch, J. Med.
Chem., 2004, 47, 1098.
4 T. Antonucci, J. S. Warmus, J. C. Hodges and D. G. Nickell,
Antiviral Chem. Chemother., 1995, 6, 98.
5 G. Dannhardt, W. Kiefer, G. Krämer, S. Maehrlein, U. Nowe
and B. Fiebich, Eur. J. Med. Chem., 2000, 35, 499.
6 J. M. Holub, K. O’Toole-Colin, A. Getzel, A. Argenti,
M. A. Evans, D. C. Smith, G. A. Dalglish, S. Rifat,
D. L. Wilson, B. M. Taylor, U. Miott, J. Glersaye, K. Suet
Lam, B. J. McCranor, J. D. Berkowitz, R. B. Miller,
J. R. Lukens, K. Krumpe, J. T. Gupton and B. S. Burnham,
Molecules, 2004, 9, 134.
7 S. Venkatraman, R. Kumar, J. Sankar, T. K. Chandrashekar,
K. Sendhil, C. Vijayan, A. Kelling and M. O. Senge,
Chem.–Eur. J., 2004, 10, 1423; A. Facchetti, A. Abbotto,
L. Beverina, M. E. van der Boom, P. Dutta, G. Evmenenko,
G. A. Pagani and T. J. Marks, Chem. Mater., 2003, 15, 1064.
8 A. Hantzsch, Chem. Ber., 1890, 21(1), 1474; M. W. Roomi
and S. F. MacDonald, Can. J. Chem., 1970, 4, 1689.
2
(CH), 115.6 (d, JC–F = 21.6 Hz, CH), 119.0 (CH), 120.6 (Cquat),
3
124.0 (d, JC–F = 3.1 Hz, CH), 127.7 (2 CH), 127.8 (CH), 128.9
(2 CH), 129.6 (d, 2JC–F = 15.5 Hz, Cquat), 129.8 (d, 3JC–F = 3.2 Hz,
4
CH), 131.7 (Cquat), 131.9 (d, JC–F = 8.3 Hz, CH), 137.4 (Cquat),
1
158.8 (d, JC–F = 247.8 Hz, Cquat), 187.3 (Cquat). EI+MS
(m/z (%)): 265.1 ([M+], 67), 170.1 ([M+ − C6H4F], 100), 142.1
([M+
([M+
−
−
C7H4FO], 8), 123.0 ([M+
−
C10H8N], 9), 115.1
C8H6FNO], 59), 95.0 ([M+
−
C11H8NO], 23).
IR (diamond): ˜ν [cm−1] = 3233 (ν (N–H), m), 3109 (w), 2988 (m),
2972 (m), 2901 (m), 2795 (w), 1620 (s), 1609 (ν (CvO), s),
1578 (w), 1558 (w), 1474 (s), 1452 (s), 1431 (s), 1396 (s),
1362 (w), 1306 (m), 1290 (w), 1267 (w), 1225 (m), 1211 (w),
1177 (w), 1152 (w), 1101 (m), 1076 (m), 1057 (m), 999 (w),
901 (m), 885 (s), 812 (m), 787 (w), 756 (s), 739 (w), 721 (m),
9 C. Paal, Chem. Ber., 1885, 18, 367; L. Knorr, Chem. Ber.,
1885, 18, 299.
This journal is © The Royal Society of Chemistry 2013
Org. Biomol. Chem.