ChemComm
Page 3 of 4ChemComm
DOI: 10.1039/C3CC44792H
Cite this: DOI: 10.1039/c0xx00000x
COMMUNICATION
product in 55% isolated yield. On the other hand, the fluorination
of ethyl 1ꢀindanoneꢀ2ꢀcarboxylate was much more efficient and
35 100% conversion to ethyl 1ꢀindanoneꢀ2ꢀfluoroꢀ2ꢀcarboxylate was
obtained in 48 hours (55% yield) because of its higher enol
content (17% in CDCl3 by 1H NMR spectroscopy).
In summary, we have prepared fluoroiodane 8 by three
different methods using either TREATꢀHF or TBAF as the source
40 of the fluoride ion. Preliminary reactivity studies have revealed
that it can be used to fluorinate 1,3ꢀdiketones and 1,3ꢀketoesters
in good isolated yields and we are currently investigating further
applications of 8 as an electrophilic fluorinating reagent with a
range of different organic substrates.
Table 2 Fluorination of 1,3ꢀdicarbonyl compoundsa
Entry
Substrate
Temp Time Monofluoro
Difluoro
(oC) (h) Productb,c (%) Productb,c(%)
1
40
40
24
24
89 (63)
95 (67)
6
5
2
3
40
60
24
24
30
11
0
55
76
100 (71)
60d 24
60d 24
4
0
100 (45)
ꢀ
45 Notes and references
1
E. Lee, A. S. Kamlet, D. C. Powers, C. N. Neumann,. G. B.
Boursalian, T. Furuya, D. C. Choi, J. M. Hooker, T. Ritter, Science,
2011, 334, 639.
5e
60 168
62 (55)
2
3
D. C. Braddock, G. Cansell, S. A. Hermitage, A. J. P. White, Chem.
Commun., 2006, 1442.
50
55
60
65
70
75
80
85
90
(a) P. Eisenberger, S. Gischig, A. Togni, Chem. Eur. J., 2006, 12,
2579; (b) I. Kieltsch, P. Eisenberger, A. Togni, Angew. Chem. Int.
Ed., 2007, 46, 754; (c) P. Eisenberger, I. Kieltsch, N. Armanino, A.
Togni, Chem. Commun., 2008, 1575; (d) M. S. Wiehn, E. V.
Vinogradova, A. Togni, J. Fluorine Chem., 2010, 131, 951; (e) K.
Niedermann, N. Frueh, E. Vinogradova, M. S. Wiehn, A. Moreno, A.
Togni, Angew. Chem. Int. Ed., 2011, 50, 1059; (f) N. Santschi, A.
Togni, J. Org. Chem., 2011, 76, 4189; (g) K. Niedermann, N. Frueh,
R. Senn, B. Czarniecki, R. Verel, A. Togni, Angew. Chem. Int. Ed.,
2012, 51, 6511.
X. Shao, X. Wang, T. Yang, L. Lu, Q. Shen, Angew. Chem. Int. Ed.,
2013, 52, 3457.
(a) M. Fornalczyk, K. Singh, A. M. Stuart, Chem. Commun., 2012,
48, 3500; (b) M. Fornalczyk, K. Singh, A. M. Stuart, Org. Biomol.
Chem., 2012, 10, 3332.
6e
60
48
100 (55)
ꢀ
a Reaction conditions: substrate (0.72 mmol), fluoroiodane 8 (1.44 mmol),
Et3N.3HF (1.94 mmol) and dry CH2Cl2 (1.2 mL). b Determined by 1H and
19F NMR spectroscopy. c Isolated yield in parenthesis. d Fluoroiodane 8 (3
equiv). e No solvent.
5
was performed at 60 oC (entry 11), the amount of ethyl 2,2ꢀ
difluoroꢀ3ꢀoxoꢀ3ꢀphenylpropanoate 13 increased.
The scope of the reaction was established with a series of 1,3ꢀ
dicarbonyl compounds and the results are presented in Table 2.
10 The relative reactivity of the different substrates could be directly
correlated with their enol content as observed previously for
electrophilic fluorinations.7c,14 When ethyl 3ꢀ(4ꢀmethoxyphenyl)ꢀ
3ꢀoxoꢀpropanoate was reacted with the fluoroiodane 8 under the
optimum reaction conditions from Table 1 (entry 9: 40 C, 24
15 hours), the monofluorinated product was isolated in 67% yield
(entry 2). Under the same reaction conditions the more reactive
substrate, 1,3ꢀdiphenylꢀ1,3ꢀpropanedione (entry 3), gave
mixture of the monofluorinated (30%) and difluorinated (55%)
products. In order to convert the 1,3ꢀdiketone into the difluorinꢀ
4
5
6
7
(a) S. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc.
Rev., 2008, 37, 320; (b) D. O’Hagan, J. Fluorine Chem., 2010, 131,
1071.
o
(a) R. E. Banks, S. N. MohialdinꢀKhaffaf, G. S. Lal, I. Sharif, R. G.
Syvret, J. Chem. Soc., Chem. Commun., 1992, 595; (b) G. S. Lal, J.
Org. Chem., 1993, 58, 2791; (c) R. E. Banks, N. J. Lawrence, A. L.
Popplewell, J. Chem. Soc., Chem. Commun., 1994, 343.
(a) G. S. Lal, G. P. Pez, R. G. Syvret, Chem. Rev., 1996, 96, 1737;
(b) S. D. Taylor, C. C. Kotoris, G. Hum, Tetrahedron, 1999, 55,
12431; (c) R. P. Singh, J. M. Shreeve, Acc. Chem. Res., 2004, 37, 31;
(d) P. T. Nyffeler, S. G. Durón, M. D. Burkart, S. P. Vincent, C.ꢀH.
Wong, Angew. Chem. Int. Ed., 2005, 44, 192.
(a) S. Hara, M. Sekiguchi, A. Ohmori, T. Fukuhara, N. Yoneda,
Chem. Commun., 1996, 1899; (b) M. Sawaguchi, S. Ayuba, S. Hara,
Synthesis, 2002, 1802; (c) M. A. Arrica, T. Wirth, Eur. J. Org.
Chem., 2005, 395; (d) T. Kitamura, S. Kuriki, M. H. Morshed, Y.
Hori, Org. Lett., 2011, 13, 2392.
a
8
9
o
20 ated product, the reaction was repeated at 60 C for 24 hours but
there was still a small amount of the monofluorinated product
present (11%) at the end of the reaction. Finally, the reaction was
repeated with 3 equivalents of the fluoroiodane 8 at 60 oC
resulting in a 100% conversion to 1,3ꢀdiphenylꢀ2,2ꢀdifluoroꢀ1,3ꢀ
25 propanedione which was isolated in 71% yield. The other 1,3ꢀ
diketone, 1ꢀphenylꢀ1,3ꢀbutanedione (entry 4), was also reacted
10 C. Y. Legault, J. Prévost, Acta Cryst., 2012, E68, o1238.
11 V. Matoušek, E. Pietrasiak, R. Schwenk, A. Togni, J. Org. Chem.,
2013, 78, 6763.
12 G. A. Rabah, G. F. Koser, Tetrahedron Lett., 1996, 37, 6453.
13 I. Kuwajima, E. Nakamura, K. Hashimoto, Org. Synth., 1990, Coll.
Vol. 7, 512.
o
with 3 equivalents of the fluoroiodane 8 at 60 C for 24 hours
producing 1ꢀphenylꢀ2,2ꢀdifluoroꢀ1,3ꢀbutanedione in 45% yield.
Due to its extremely low enol content (100% ketone in CDCl3 by
30 1H NMR spectroscopy), the fluorination of the monosubstituted
1,3ꢀketoester, ethyl 2ꢀmethylꢀ3ꢀoxoꢀ3ꢀphenylpropanoate (entry 5)
took 7 days at 60 oC without solvent to give the fluorinated
14 L. Hintermann, A. Togni, Angew. Chem. Int. Ed., 2000, 39, 4359.
This journal is © The Royal Society of Chemistry [year]
[journal], [year], [vol], 00–00 | 3