AcO
AcO
O
AcO
OH
BzNH
Ph
O
OH
OPMP
O
O
i
O
i, ii
O
BzN
Ph
17 +
O
O
90%
O
75%
OH
HO
H
O
O
Ph
HO
HO
Ph
O
COOH
O
BzO
5
6
AcO
O
1
ii 80%
Scheme 4 Reagents and conditions: i, DCC, DMAP (cat.), room temp., 3 h;
ii, 5% TsOH in MeOH, room temp., 1 h
AcO
AcO
O
O
iii
O
O
100%
O
OH
Ph
O
The described chemistry offers an efficient pathway for the
preparation of new paclitaxel derivatives, and points to the
naturally abundant taxane diterpene fraction—taxine—as a
valuable starting material for further semisynthetic studies.
O
O
O
O
O
O
Ph
HO
O
OH
OH
O
8
7
AcO
iv
80%
Notes and References
O
O
OH
Ph
† E-mail: rsaicic@chem.bg.ac.yu
O
MeO
+
1 Taxol®: Science and Applications, ed. M. Suffness, CRC Press, Boca
Raton, 1995, and references cited therein. Isolation and structure
elucidation: M. C. Wani, H. L. Taylor, M. E. Wall, P. Coggon and A. T.
McPhail, J. Am. Chem. Soc., 1971, 93, 2325. Total syntheses: K. C.
Nicolaou, H. Ueno, J.-J. Liu, P. G. Nantermet, Z. Yang, J. Renaud, K.
Paulvannan and R. Chadha, J. Am. Chem. Soc., 1995, 117, 653; R. A.
Holton, H.-B. Kim, C. Somoza, F. Liang, R. J. Biediger, P. D. Boatman,
M. Shindo, C. C. Smith, S. Kim, H. Nadizadeh, Y. Suzuki, C. Tao, P.
Vu, S. Tang, P. Zhang, K. K. Murthi, L. N. Gentile and J. H. Liu, J. Am.
Chem. Soc., 1994, 116, 1599; S. J. Danishefsky, J. J. Masters, W. B.
Young, J. T. Link, L. B. Snyder, T. V. Magee, D. K. Jung, R. C. A.
Isaacs, W. G. Bornmann, C. A. Alaimo, C. A. Coburn and M. J. Di
Grandi, J. Am. Chem. Soc., 1996, 118, 2843; P. A. Wender, N. F.
Badham, S. P. Conway, P. E. Floreancig, T. E. Glass, J. B. Houze, N. E.
Krauss, D. Lae, D. G. Marquess, P. L. McGrane, W. Meng, M. G.
Natchus, A. J. Shuker, J. C. Sutton and R. E. Taylor, J. Am. Chem. Soc.,
1997, 119, 2757
O
O
OH
OR2
OR1
O
HO
9
10 R1 = R2 = H
v
80%
11 R1 = TBDMS, R2 = H
12 R1 = TBDMS, R2 = Ms
13 R1 = H, R2 = Ms
HNBz
O
vi
vii
87%
91%
Ph
MeO
OH
viii 82%
AcO
O
AcO
O
O
x
HO
O
BzO
70%
O
AcO
16
2 J.-N. Denis, A. E. Greene, D. Guenard, F. Gueritte-Voegelein, L.
Mangatal and P. Potier, J. Am. Chem. Soc., 1998, 110, 5917
3 G. Chauviere, D. Guenard, F. Picot, V. Senilh and P. Potier, C. R.
Seances Acad. Sci., Ser. 2, 1981, 293, 501; K. M. Witherup, S. A. Look,
M. W. Stasko, T. J. Ghiorzi, G. M. Mushik and G. M. Cragg, J. Nat.
Prod., 1990, 53, 1249; see also ref. 2.
O
O
xi 83%
RO
O
O
AcO
O
14 R = H
15 R = OAc
ix 60%
HO
4 H. Lucas, Arch. Pharm., 1856, 14, 438; G. Appendino, in Alkaloids:
Chemical and Biological Perspectives, ed., S. W. Pelletier, Pergamon,
Oxford, 1996, vol. 11, p. 237; L. H. D. Jenniskens, E. L. M. van
Rosendaal, T. A. van Beek, P. H. G. Wiegerinck and H. W. Scheeren,
J. Nat. Prod., 1996, 59, 117; for an alternative isolation procedure, see
ref. 7(a).
HO
H
BzO
O
AcO
17
Scheme 3 Reagents and conditions: i, COCl2 (20 equiv.), CH2Cl2, 0 °C, 20
min; then Et2O, H2O, imidazole (cat.), 0 °C, 20 min; ii, Dess–Martin
periodinane (2 equiv.), CH2Cl2, TFA (cat.), room temp., 12 h; iii, OsO4
(cat.), NMO, THF, H2O, room temp., 4 h; iv, 10% KOAc in MeOH, reflux,
30 min; v, TBDMSCl, imidazole, DMF, room temp., 3 h; vi, MsCl, Py, 0 °C
to room temp., 24 h; vii, 7% HF in MeCN, room temp., 7 h; viii, Pri2NEt (7
equiv.), toluene, reflux, 30 h; ix, Ac2O (7 equiv.), DMAP (14 equiv.),
CH2Cl2, room temp., 4 h; x, PhLi (10 equiv.), THF, 278 °C, 0.5 h; then
Ac2O, DMAP, CH2Cl2, room temp., 1 h; xi, NaBH4 (excess), MeOH, room
temp., 3 h
5 L. Ettouati, A. Ahond, C. Poupat and P. Potier, J. Nat. Prod., 1991, 54,
1455; in some specimens of Taxus baccata a content of taxine as high
as 17 g kg21 was found, 10 g being taxine B; the authors are grateful to
Dr A. Ahond and Dr C. Poupat for this personal communication.
6 A. G. Chaudhary, J. M. Rimoldi and D. G. I. Kingston, J. Org. Chem.,
1993, 58, 3798; S.-H. Chen, S. Huang, J. Kant, C. Fairchild, J. Wei and
V. Farina, J. Org. Chem., 1993, 58, 5028; V. Farina, S.-H. Chen, D. R.
Langley, M. D. Wittman, J. Kant and D. Vyas, Eur. Pat. Appl., EP
590,267/6 apr, 1994 (Chem. Abstr., 1994, 121, 205747n).
7 (a) L. Ettouati, A. Ahond, C. Poupat and P. Potier, Tetrahedron, 1991,
47, 9823; (b) P. H. G. Wiegerinck, L. Fluks, J. B. Hammink, S. J. E.
Mulders, F. M. H. de Groot, H. L. M. van Rosendaal and H. W. Sheeren,
J. Org. Chem., 1996, 61, 7092; (c) I. Fenoglio, G. M. Nano, D. G. V.
Velde and G. Appendino, Tetrahedron Lett., 1996, 37, 3203; (d) H.
Poujol, A. A. Mourabit, A. Ahond, C. Poupat and P. Potier,
Tetrahedron, 1997, 53, 12 575 and references cited therein.
8 While this work was in progress, the first semisynthesis of 7-deox-
ybaccatin from 3 was reported, in 15 steps and 1.7% overall yield, see
ref. 7(d).
occurred under these conditions. Eventually, refluxing 8 with
methanolic KOAc afforded the desired triol 10 in 80% yield.
Optically pure (2S,3R)-(-)-methyl 2,3-dihydroxy-3-phenylpro-
panoate 9 was isolated as the side product of this reaction, and
further converted into the paclitaxel side chain according to a
previously published procedure.9 The transformation of the key
intermediate 10 into 7-deoxybaccatin III 17 was accomplished
by applying a modified methodology previously developed in
total syntheses of paclitaxel.1,7a In this way, starting from
cinnamoyltaxicine I 5, 7-deoxybaccatin III was obtained in
11.5% overall yield (unoptimized).10
9 J.-N. Denis, A. Correa and A. E. Greene, J. Org. Chem., 1990, 55,
1957
10 Spectral data identical to those reported in ref. 7(d).
11 A. M. Kanazawa, J.-N. Denis and A. E. Greene, Chem. Commun., 1994,
2591
12 1H NMR data identical to those reported in ref. 6.
7-Deoxybaccatin is a direct precursor of paclitaxel ana-
logues: esterification of 17 with acid 18,11 followed by acidic
hydrolysis (TsOH in MeOH) afforded 7-deoxypaclitaxel 1 in
75% yield (Scheme 4).12
Received in Glasgow, UK, 28th May 1998; 8/03990I
1746
Chem. Commun., 1998