Paper
Organic & Biomolecular Chemistry
2-Deoxy-[5-(pyrene-1-methyloxyhex-5-yn)]uridine (dRP4U). interaction (EvdW), coulomb interaction (Eelec), hydrogen bond
1H NMR (CD3OD-d4): δ 1.67 (2H, J = 7.2 Hz, quin), 1.81 (2H, (EH-bond) and hydrophobic interaction (EASA). In detail, see
m), 2.19 (2H, m), 2.37 (2H, J = 6.8 Hz, t), 3.69 (1H, m), 3.88 ref. 17.
(1H, J = 3.2, 6.0 Hz, tt), 4.33 (1H, J = 3.2, 6.4 Hz, tt), 5.22 (2H,
Sraw ¼ gðEvdW þ Eelec þ EH-bond þ EASA
Þ
s), 6.20 (2H, J = 6.6 Hz, t), 8.11 (9H, m), 8.38 (1H, J = 9.2 Hz, d);
13C NMR (CD3OD-d4): δ 19.9, 26.4, 30.0, 30.7, 41.6, 62.6, 71.1,
72.1, 72.4, 72.9, 86.9, 89.1, 94.9, 101.3, 124.7, 125.6, 125.9,
126.1, 126.4, 127.2, 128.5, 128.5, 128.8, 130.7, 132.3, 132.7,
132.8, 133.0, 144.3, 151.4, 164.8; ESI-MS m/z 561 [M + Na]+;
Acknowledgements
This work was supported by JSPS KAKENHI Grant number
12874792. This work was supported in part by grants of the
JGC-S Scholarship Foundation and the Amano Institute of
Technology.
HRMS (ESI) calcd for
561.2124.
C32H30N2O6Na: 561.2002, found:
2-Deoxy-[5-(1-hydroxybut-3-yn)]uridine (dRU2OH). 1H NMR
(CD3OD-d4): δ 2.22 (1H, J = 6.8, 13.6 13.6 Hz, ddd), 2.30 (1H, J =
3.6, 6.0, 13.2 Hz, ddd), 2.59 (2H, J = 6.4 Hz, t), 3.31 (1H, br),
3.35(1H, br), 3.69 (2H, J = 6.6 Hz, t), 3.77 (2H, J = 3.2, 11.6,
31.2 Hz, ddd), 3.93 (1H, J = 3.2, 6.4 Hz, dd), 4.40 (1H, J = 3.2, 6.0
Hz, dd), 6.23 (1H, J = 6.8 Hz, t), 8.22 (1H, s); 13C NMR (CD3OD-
d4): δ 23.2, 40.5, 60.2, 61.3, 70.7, 72.3, 85.6, 87.7, 91.0, 99.5,
143.4, 149.9, 163.5; ESI-MS m/z 319 [M + Na]+; HRMS (ESI) calcd
for C13H16N2O6Na: 319.0906, found: 319.0815.
Notes and references
1 Recent examples: J. Riedl, P. Ménová, R. Pohl, P. Orsá,
M. Fojta and M. Hocek, J. Org. Chem., 2012, 77, 8287–8293;
L. Wicke and J. W. Engels, Bioconjugate Chem., 2012, 23,
627–642; S. Ikeda and A. Okamoto, Chem.–Asian J., 2008, 3,
958–968; P. Kaden, E. M.-Enthart, A. Trifonov, T. Fiebig and
H.-A. Wagenknecht, Angew. Chem., Int. Ed., 2005, 44, 1636–
1639.
2 M. M. Masud, T. Masuda, Y. Inoue, M. Kuwahara, H. Sawai
and H. Ozaki, Bioorg. Med. Chem. Lett., 2011, 21, 715–717;
S. M. Park, H. Yang, S.-K. Park, H. M. Kim and B. H. Kim,
Bioorg. Med. Chem. Lett., 2010, 20, 5831–5834.
3 C. Höbartner, G. Sicoli, F. Wachowius, D. B. Gophane and
S. T. Sigurdsson, J. Org. Chem., 2012, 77, 7749–7754;
A. Roychowdhury, H. Illangkoon, C. L. Hendrickson and
S. A. Benner, Org. Lett., 2004, 6, 489–492; A.-M. Chacko,
W. Qu and H. F. Kung, J. Org. Chem., 2008, 73, 4874–4881.
4 H. Yamakoshi, K. Dodo, M. Okada, J. Ando, A. Palonpon,
K. Fujita, S. Kawata and M. Sodeoka, J. Am. Chem. Soc.,
2011, 133, 6102–6105; S. Ikeda, T. Kubota, D. O. Wang,
H. Yanagisawa, T. Umemoto and A. Okamoto, ChemBio-
Chem, 2011, 12, 2871–2880.
5 D. J. Hurley and Y. Tor, J. Am. Chem. Soc., 2002, 124, 3749–
3762; I. Bouamaied and E. Stulz, Synlett, 2004, 9, 1579–
1583.
6 D. M. Perrin, T. Garestier and C. Hélène, J. Am. Chem. Soc.,
2001, 123, 1556–1563; C. H. Lam and D. M. Perrin, Bioorg.
Med. Chem. Lett., 2010, 20, 5119–5122.
7 A. Hatano, A. Harano and M. Kirihara, Chem. Lett., 2006,
232–233.
8 A. Hatano, A. Harano, Y. Takigawa, Y. Naramoto, K. Toda,
Y. Nakagomi and H. Yamada, Bioorg. Med. Chem., 2008, 16,
3866–3870.
2-Deoxy-[5-(1-hydroxyhex-5-yn)]uridine (dRU4OH). 1H NMR
(CD3OD-d4): δ 1.63 (4H, m), 2.24 (2H, m), 2.39 (2H, J = 6.4 Hz,
t), 2.56 (2H, J = 6.0 Hz, t), 3.74 (2H, J = 3.2, 11.8, 32.2 Hz, ddd),
3.90 (1H, J = 2.8, 5.6 Hz, dd), 4.39 (1H, J = 3.2, 6.0 Hz, tt), 6.22
(1H, J = 6.4 Hz, t), 8.20 (1H, s); 13C NMR (CD3OD-d4): δ 18.6,
4.7, 31.4, 47.4, 61.1, 70.7, 71.6, 85.5, 87.7, 93.5, 99.9, 142.9,
150.2, 163.7; Anal. Calcd for C15H20N2O6: C, 55.55; H, 6.22; N,
8.64. Found: C, 55.58; H, 6.16; N, 8.46.
2-Deoxy-[5-(1-hydroxyoct-7-yn)]uridine (dRU6OH). 1H NMR
(DMSO-d6): δ 1.27 (4H, br), 1.36 (2H, J = 6.4 Hz, quin), 1.56
(2H, J = 7.2 Hz, quin), 2.00 (1H, J = 6.2, 14.0 Hz, tt), 2.34 (1H,
m), 2.59 (2H, J = 7.4 Hz, t), 3.33 (1H, J = 6.4, 11.6 Hz, dd), 3.87
(1H, J = 3.6, 7.2 Hz, dd), 4.18 (2H, J = 4.4, 9.6 Hz, tt), 4.36 (1H,
J = 5.2 Hz, t), 5.10 (1H, J = 5.2 Hz, t), 5.29 (1H, J = 4.0 Hz, d),
6.12 (1H, J = 6.2 Hz, t), 6.37 (1H, s), 8.61 (1H, s); 13C NMR
(DMSO-d6): δ 25.6, 26.9, 27.8, 28.7, 32.8, 41.7, 61.2, 70.2, 79.6,
87.9, 88.6, 100.2, 107.0, 137.3, 154.4, 159.0, 171.7; Anal. Calcd
for C17H24N2O6: C, 57.94; H, 6.86; N, 7.95. Found: C, 57.73;
H, 6.78; N, 7.79.
Docking studies
Docking studies were performed using the MF myPresto siev-
gene program (FiatLux) with an AMBER-type molecular force
field. This simulation was performed using two basic criteria
as follows. Firstly, a global minimum search was carried out
that assumes contact between three atoms of the substrate
and three atoms at the surface of the protein pocket. This
simulation evaluates the distance and similarities between the
protein pocket and substrate. Secondly, a local minimum
search was performed that is reinitiated with different con-
formers. The receptor–substrate interactions accounted for van
der Waals, coulomb, hydrogen bond, and hydrophobic inter-
actions. The dimensionless raw docking score that was used
9 S. Immacolata, S. C. Daniela, R. Silvia, U. Daniela and
T. Marco, Enzyme Microb. Technol., 2011, 49, 52–58;
I. Serraa, T. Bavaroa, D. A. Cecchinia, S. Dalyc,
A. M. Albertinib, M. Terrenia and D. Ubiali, J. Mol. Catal. B:
Enzym., 2013, 95, 16–22.
for receptor–substrate docking is below. The “g” was a para- 10 I. Votruba, A. Holý, H. Dvořáková, J. Günter, D. Hocková,
meter and it was set to 0.01 mol kcal−1. “E” value showed the
potential functions for each interaction, van der Waals
H. Hřebabecký, T. Cihlar and M. Masojídková, Collect.
Czech. Chem. Commun., 1994, 59, 2303–2330.
6904 | Org. Biomol. Chem., 2013, 11, 6900–6905
This journal is © The Royal Society of Chemistry 2013