10.1002/chem.201704704
Chemistry - A European Journal
FULL PAPER
Yield: 78%, 0.23 g. 1H NMR (300MHz, CDCl3, ppm): δ 4.05 (s, 3H,
OCH3), 7.21 (ddd, J3H,H = 7.5 Hz, J4H,H = 4.5 Hz, J5H,H = 1.2 Hz, 1H, Ar-H),
7.60 (d, J3H,H = 7.5 Hz, 2H, Ar-H), 7.70 (td, J3H,H = 7.5 Hz, J5H,H = 1.2 Hz,
Loupy, F. Volatron, Tetrahedron 2002, 58, 2155-2162; d) J. Cossy, C.
Pale-Grosdemange, Tetrahedron Lett. 1989, 30, 2771-2774.
[3]
Reviews and selected recent reports about new protocols, see:a) A.
Correa, C. Bolm, Topics in Organometallic Chemistry (Springer), 2012,
46, 55-85. b) J. G. Hernández, K. J. Ardila-Fierro, D. Crawford, S. L.
James, C. Bolm, Green Chem. 2017, 19, 2620-2625; c) T. Ben Halima,
J. K. Vandavasi, M. Shkoor, S. G. Newman, ACS Catal. 2017, 7, 2176-
2180; d) R. M. de Figueiredo, J.-S. Suppo, J.-M. Campagne, Chem.
Rev. 2016, 116, 12029-12122; e) P. Crochet, V. Cadierno, Chem.
Commun. 2015, 51, 2495-2505; f) P. Cherkupally, S. Ramesh, B. G. de
la Torre, T. Govender, H. G. Kruger, F. A Organometallicslbericio, ACS
Comb. Sci. 2014, 16, 579-601; g) R. García-Álvarez, P. Crochet, V.
Cadierno, Green Chem. 2013, 15, 46-66; h) V. R. Pattabiraman, J. W.
Bode, Nature 2011, 480, 471-479; i) C. L. Allen, J. M. Williams, Chem.
Soc. Rev. 2011, 40, 3405-3415.
1H, Ar-H), 7.84 (dt, J3H,H = 7.5 Hz, J5H,H = 1.2 Hz, 1H, Ar-H), 8.00 (d, J2
H,H
= 7.5 Hz, 2H, Ar-H), 8.30 (m, 1H, Ar-H); 13C{1H} NMR (75 MHz, CDCl3,
ppm): δ 123.46 (J1 = 270.8 Hz, -CF3), 125.96 (m, CAr), 127.98 (CAr),
C,F
128.33 (CAr), 134.46 (J2
= 33.0 Hz, CAr), 136.69 (CAr), 138.19 (CAr),
C,F
148.14 (CAr), 148.36 (CAr), 161.88 (C=8), 164.00 (C=O).
HRMS for 19 (ESI) m/z calculated for C14H9F3N2O2 (M+H)+: 295.06889,
found: 295.06894.
Synthesis of Pd(L1)(NMM) (22)
[4]
[5]
a) J. Han, M. Jeon, H. K. Pak, Y. H. Rhee, J. Park, Adv. Synth. Catal.
2014, 356, 2769-2774; b) Z.-H. Guan, Z.-Y. Zhang, Z.-H. Ren, Y.-Y.
Wang, X. Zhang, J. Org. Chem. 2010, 76, 339-341; c) A. J. Blake, H.
McNab, M. E.-A. Murray, J. Chem. Soc. Perkin Trans. 1 1989, 589-595.
a) P. Song, P. Yu, J.-S. Lin, Y. Li, N.-Y. Yang, X.-Y. Liu, Org. Lett 2017,
19, 1330-1333; b) J. Wu, C. Zhao, J. Wang, J. Am. Chem. Soc 2016,
138, 4706-4709; c) W. Zhu, L. Zhao, M.-X. Wang, J. Org. Chem. 2015,
80, 12047-12057; d) C.-Y. Liu, F.-S. Han, Chem. Commun. 2015, 51,
11844-11847; e) M. Chen, Z. H. Ren, Y. Y. Wang, Z. H. Guan, Angew.
Chem. Int. Ed. 2013, 52, 14196-14199.
To a 100 mL Schlenk tube which was charged with 10 mL heptane
solution of Pd(allyl)(Cp) (20) (0.816 mmol) and NMM (21) (0.816 mmol)
and equipped with a septum and a stirring bar, 5 mL heptane solution of
L1 (0.866 mmol) was added dropwise at room temperature. After that,
the mixture was kept stirring at the same temperature overnight. When
the reaction finished, the solution was filtered and residue was re-
dissolved by heptane/toluene at 50 oC. The solution was filtered again
through Celite. The pale yellow crystal of 22 was obtained from this clear
solution at 8 oC. Yield: 56%. 1H NMR (400MHz, C6D6, ppm): δ 1.15 (d,
J3H,P = 16 Hz, 18H, C(CH3)3), 1.21 (d, J3H,P = 16 Hz, 18H, C(CH3)3), 2.86
(s, 3H, N-CH3), 3.53 - 3.74 (m, 4H, -OCH2CH2O-), 4.08 (d, J3H,H = 4 Hz,
2H, CH=CH); 31P{1H} NMR (162 MHz, C6D6, ppm): δ 186.42 (s). 13C{1H}
NMR (100 MHz, CDCl3, ppm): δ 22.98 (N-CH3), 28.44 (d, J2C,P = 49 Hz,
C(CH3)3), 39.95 (d, J1C,P = 118 Hz, C(CH3)3), 50.76 (d, J2C,P = 27 Hz,
CH=CH), 69.29 (OCH2CH2O), 175.96 (C=O).
[6]
[7]
a) R. C. Bruening, E. M. Oltz, J. Furukawa, K. Nakanishi, K. Kustin, J.
Am. Chem. Soc 1985, 107, 5298-5300; b) I. G. Macara, G. C. McLEOD,
K. Kustin, Biochem. J. 1979, 181, 457-465; c) Y. Sumiki, K. Isono, J.
Nagatsu, T. Takauchi, J. Antibiot. 1960, 13, 416-416.
a) G. Schäfer, C. Matthey, J. W. Bode, Angew. Chem. Int. Ed. 2012, 51,
9173-9175; b) S. Hayashi, H. Yorimitsu, K. Oshima, Angew. Chem. Int.
Ed. 2009, 48, 7224-7226; c) S. Subramaniam, S. D. Donevan, M. A.
Rogawski, J. Pharmacol. Exp. Ther. 1996, 276, 161-168; d) K. Muir, G.
Palmer, Epilepsy Res. Suppl. 1991, 3, 147; e) N. M. Biales, “N-
Oxoalkylacrylacrylamides” in Encyclopedia of Polymer Science and
Technology, Vol. 15, (Exec. Ed), Wiley-Interscience, New York, 1971,
pp. 353-364.
[8]
[9]
a) J. S. Quesnel, A. Fabrikant, B. A. Arndtsen, Chem. Sci. 2016, 7, 295-
300; b) L. Wu, X. Fang, Q. Liu, R. Jackstell, M. Beller, X.-F. Wu, ACS
Catal. 2014, 4, 2977-2989; c) S. T. Gadge, B. M. Bhanage, RSC Adv.
2014, 4, 10367-10389.
Acknowledgements
We are grateful for the financial support from Sino-German
(CSC-DAAD) Postdoc Scholarship Program (57251553). We
also thank the analytical department in Leibniz-Institute for
Catalysis at University of Rostock (LIKAT) for their excellent
technical and analytical support and Dr. Kathrin Junge for her
device support.
a) T. Xu, F. Sha, H. Alper, J. Am. Chem. Soc 2016, 138, 6629-6635; b)
J. Liu, Q. Liu, R. Franke, R. Jackstell, M. Beller, J. Am. Chem. Soc
2015, 137, 8556-8563; c) K. Natte, A. Dumrath, H. Neumann, M. Beller,
Angew. Chem. Int. Ed. 2014, 53, 10090-10094.
[10] a) U. Gross, P. Koos, M. O'Brien, A. Polyzos, S. V. Ley, Eur. J. Org.
Chem. 2014, 2014, 6418-6430; b) T. T. Dang, Y. Zhu, J. S. Ngiam, S. C.
Ghosh, A. Chen, A. M. Seayad, ACS Catal. 2013, 3, 1406-1410; c) X. F.
Wu, H. Neumann, M. Beller, ChemCatChem 2010, 2, 509-513; d) J. R.
Martinelli, D. A. Watson, D. M. Freckmann, T. E. Barder, S. L.
Buchwald, J. Org. Chem. 2008, 73, 7102-7107; e) J. Albaneze-Walker,
C. Bazaral, T. Leavey, P. G. Dormer, J. A. Murry, Org. Lett. 2004, 6,
2097-2100.
Keywords: 1,2-Bis(di-tert-butylphosphinoxy)ethane • Pd-
catalyzed carbonylation • carbon monoxide • N-acyl enamides •
N-acyl imines
[11] a) D. M. Spasyuk, New J. Chem 2015, 39, 6649-6658; b) I. D. Kostas,
A.-C. Tenchiu, C. Arbez-Gindre, V. Psycharis, C. P. Raptopoulou, Catal.
Commun. 2014, 51, 15-18; c) I. O. Koshevoy, Y.-C. Chang, Y.-A. Chen,
A. J. Karttunen, E. V. Grachova, S. P. Tunik, J. Jꢀnis, T. A. Pakkanen,
P.-T. Chou, Organometallics 2014, 33, 2363-2371; d) M. J. Sgro, D. W.
Stephan, Dalton Trans. 2013, 42, 10460-10472; e) S. R. Khan, B. M.
Bhanage, Appl. Organomet. Chem. 2013, 27, 711-715. f) H. Neumann,
R. Kadyrov, X. F. Wu, M. Beller, Chem.- Asian J. 2012, 7, 2213-2216.
[12] a) R. H. Munday, J. R. Martinelli, S. L. Buchwald, J. Am. Chem. Soc
2008, 130, 2754-2755; b) C. F. Barnard, Org. Process. Res. Dev. 2008,
12, 566-574.
[1]
Reviews and selected recent reports about formation of amide bond,
see: a) Y. Shimoda, H. Yamamoto, J. Am. Chem. Soc. 2017, 139,
6855-6858; b) M. S. Scholz, L. M. Wingen, Inorg. Chem. 2017, 56,
5510-5513; c) S. B. Lawrenson, R. Arav, M. North, Green Chem. 2017,
19, 1685-1691; d) C. De Risi, G. P. Pollini, V. Zanirato, Chem. Rev.
2016, 116, 3241-3305; e) C. Chen, F. Verpoort, Q. Wu, RSC Adv. 2016,
6, 55599-55607; f) S. Mukherjee, M. Pal, Curr. Med. Chem. 2013, 20,
4386-4410.
[2]
a) H. Charville, D. A. Jackson, G. Hodges, A. Whiting, M. R. Wilson,
Eur. J. Org. Chem. 2011, 2011, 5981-5990; b) L. J. Goossen, D. M.
Ohlmann, P. P. Lange, Synthesis 2009, 2009, 160-164; c) L. Perreux, A.
This article is protected by copyright. All rights reserved.