Chiral 1-[ω-(4-Chlorophenoxy)alkyl]-4-methylpiperidines
J ournal of Medicinal Chemistry, 2003, Vol. 46, No. 11 2123
(12) Wilke, R. A.; Mehta, R. P.; Lupardus, P. J .; Chen, Y.; Ruoho, A.
E.; J ackson, M. B. Sigma receptor photolabeling and sigma
receptor-mediated modulation of potassium channels in tumor
cells. J . Biol. Chem. 1999, 274, 18387-18392.
(13) Maurice, T.; Urani, A.; Phan, V. L.; Romieu, P. The interaction
between neuroactive steroids and the σ1 receptor function:
behavioral consequences and therapeutic opportunities. Brain
Res. Rev. 2001, 37, 116-132.
(14) Kobayashi, T.; Matsuno, K.; Murai, M.; Mita, S. Sigma 1 receptor
subtype is involved in the facilitation of cortical dopaminergic
transmission in the rat brain. Neurochem. Res. 1997, 22, 1105-
1109.
(15) Bermack, J . E.; Debonnel, G. Modulation of serotonergic neu-
rotransmission by short- and long-term treatments with sigma
ligands. Br. J . Pharmacol. 2001, 134, 691-699.
lization formula, and melting point are listed in Table 1. All
of them were obtained as white crystalline powders.
(+)-(R)- a n d (-)-(S)-4-Meth yl-1-[2-(4-ch lor op h en oxy)-
1-m eth yl-eth yl]p ip er id in e h yd r och lor id es [(+)-(R)-17,
(-)-(S)-17]: 1H NMR: δ 1.04 (d, 3H, piperidine CH3), 1.58 (d,
3H, CH3), 1.50-1.90 and 2.10-2.24 (m, 5H, 2 piperidine
NCH2CH2 and piperidine CH), 2.78-3.10 and 3.18-3.38 (m,
2H, 2 piperidine NCH), 3.42-3.74 (m, 3H, 2 piperidine NCH
and CH3CHN), 4.22-4.36 (dd, 1H, 1 of OCH2), 4.48-4.62 (dd,
1H, 1 of OCH2), 6.80-7.40 (m, 4H, aromatic), 12.20 (bb, 1H,
NH+, D2O exchanged); GC/MS m/z (free amine) 267 (M+, 0.2),
126 (100).
(-)-(R)- a n d (+)-(S)-4-Meth yl-1-[3-(4-ch lor op h en oxy)-
1-m eth yl-p r op yl]p ip er id in e h yd r och lor id es [(-)-(R)-18,
(+)-(S)-18]: 1H NMR: δ 1.02 (d, 3H, piperidine CH3), 1.46 (d,
3H, CH3), 1.40-2.25 (m, 6H, 2 piperidine NCH2CH2, 1 of
OCH2CH2 and piperidine CH), 2.60-2.95 and 2.96-3.30 (m,
3H, 2 piperidine NCH and 1 of OCH2CH2), 3.30-3.60 (m, 3H,
2 piperidine NCH and CH3CHN) 3.90-4.20 (m, 2H, OCH2),
6.80-7.40 (m, 4H, aromatic), 11.80 (bb, 1H, NH+, D2O
exchanged); GC/MS m/z (free amine) 281 (M+, 5), 126 (100).
Biologica l Meth od s. (+)-[3H]-Pentazocine and [3H]-DTG
were obtained from PerkinElmer Life Sciences (Zaventem,
Belgium). [3H]-(()-Emopamil was purchased from American
Radiolabeled Chemicals Inc. (St. Louis, MO). (+)-Pentazocine
was obtained from Sigma-RBI (Milan, Italy), and DTG and
ifenprodil were purchased from Tocris Cookson Ltd., UK. Male
Dunkin guinea-pigs and Wistar Hannover rats (250-300 g)
were from Harlan, Italy.
(16) Bowen, W. D.; Tolentino, P. J .; Hsu, K. K.; Cutts, J . M.; Naidu,
S. S. Inhibition of the cholinergic phosphoinositide response by
sigma ligands: distinguishing a sigma receptor-mediated mech-
anism from a mechanism involving direct cholinergic antago-
nism. In Multiple Sigma and PCP Receptor Ligands: Mechanism
for Neuromodulation and Neuroprotection? Kamenka, J .-M.,
Domino, E. F., Eds.; NPP Books: Ann Arbor, MI, 1992; pp 155-
167.
(17) Mei, J .; Pasternak, G. W. σ1 receptor modulation of opioid
analgesia in the mouse. J . Pharmacol. Exp. Ther. 2002, 300,
1070-1074.
(18) Connick, J . H.; Hanlon, G.; Roberts, J .; France, L.; Fox, P. K.;
Nicholson, C. D. Multiple σ binding sites in guinea-pig and rat
brain membranes: G-protein interactions. Br. J . Pharmacol.
1992, 107, 726-731.
(19) Monnet, F. P.; Debonnel, G.; Bergeron, R.; Gronier, B.; de
Montigny, C. The effects of sigma ligands and of neuropeptide
Y on N-methyl-D aspartate-induced neuronal activation of CA3
dorsal hippocampus neurones are differentially affected by
pertussis toxin. Br. J . Pharmacol. 1994, 112, 709-715.
(20) Aydar, E.; Palmer, C. P.; Klyachko, V. A.; J ackson, M. B. The
sigma receptor as a ligand-regulated auxiliary potassium chan-
nel subunit. Neuron 2002, 34, 399-410.
(21) Moebius, F. F.; Striessnig, J .; Glossmann, H. The mysteries of
sigma receptors: new family members reveal a role in cholesterol
synthesis. Trends Pharmacol. Sci. 1997, 18, 67-70.
(22) Dussossoy, D.; Carayon, P.; Belugou, S.; Feraut, D.; Bord, A.;
Goubet, C.; Roque, C.; Vidal, H.; Combes, T.; Loison, G.; Casellas,
P. Colocalization of sterol isomerase and sigma1 receptor at
endoplasmic reticulum and nuclear envelope level. Eur. J .
Biochem. 1999, 263, 377-385.
Ra d ioliga n d Bin d in g Assa ys. All procedures followed to
perform the binding assays at σ1 site,26 σ2 site,26 and sterol
∆8-∆7 isomerase site (EBP)59 were previously described.50
Ack n ow led gm en t. This study was supported by
Research Grant No. 2001037552-003 from Universita`
degli Studi di Bari and MURST (Italy) for the scientific
program in CO7X field (2002-2003).
(23) Bowen, W. D. Sigma receptors: recent advances and new clinical
potentials. Pharm. Acta Helv. 2000, 74, 211-218.
(24) Vilner, B. J .; Bowen, W. D. Modulation of cellular calcium by
Sigma-2 receptors: Release from intracellular stores in human
SK-N-SH neuroblastoma cells. J . Pharmacol. Exp. Ther. 2000,
292, 900-911.
Refer en ces
(1) Walker, J . M.; Bowen, W. D.; Walker, F. O.; Matsumoto, R. R.;
de Costa, B.; Rice, K. C. Sigma receptors: biology and function.
Pharmacol. Rev. 1990, 42, 355-402.
(25) Walker, J . M.; Bowen, W. D.; Patrick, S. L.; Williams, W. E.;
Mascarella, S. W.; Bai, X.; Carroll, F. I. A comparison of (-)-
deoxybenzomorphans devoid of opiate activity with their dex-
trorotatory phenolic counterparts suggests a role of sigma-2
receptors in motor function. Eur. J . Pharmacol. 1993, 231, 61-
68.
(2) Tam, S. W. Potential therapeutic application of sigma receptor
antagonists. In The sigma receptors; Itzhak, Y., Ed.; Academic
Press: London, 1994; pp 191-195.
(3) Snyder, S. H.; Largent, B. L. Receptor mechanisms in antipsy-
chotic drug action: focus on sigma receptors. J . Neuropsych.
Clin. Neurosci. 1989, 1, 7-15.
(26) Matsumoto, R. R.; Bowen, W. D.; Tom, M. A.; Nhi Vo, V.; Truong,
D. D.; de Costa, B. R. Characterization of two novel σ receptor
ligands: antidystonic effects in rats suggest σ receptor antago-
nism. Eur. J . Pharmacol. 1995, 280, 301-310.
(27) J eanjean, A. P.; Laterre, E. C.; Maloteaux, J . M. Neuroleptic
binding to sigma receptors: possible involvement in neuroleptic-
induced acute dystonia. Biol. Psych. 1997, 41, 1010-1019.
(28) Matsumoto, R. R.; Pouw, B. Correlation between neuroleptic
binding to σ1 and σ2 receptors and acute dystonic reactions. Eur.
J . Pharmacol. 2000, 401, 155-160.
(29) Maurice, T.; Phan, V. L.; Privat, A. The anti-amnesic effects of
sigma1 (σ1) receptor agonists confirmed by in vivo antisense
strategy in the mouse. Brain Res. 2001, 898, 113-121.
(30) Maurice, T.; Lockhart, B. P. Neuroprotective and antiamnesic
potentials of σ (sigma) receptor ligands. Prog. Neuro-Psychop-
harmacol. Biol. Psychiat. 1997, 21, 69-102.
(31) Nishikawa, H.; Hashino, A.; Kume, T.; Katsuki, H.; Kaneko, S.;
Akaike, A. Involvement of direct inhibition of NMDA receptors
in the effects of σ-receptor ligands on glutamate neurotoxicity
in vitro. Eur. J . Pharmacol. 2000, 404, 41-48.
(4) Frieboes, R. M.; Murck, H.; Wiedemann, K.; Holsboer, F.; Steiger,
A. Open clinical trial on the sigma ligand panamesine in patients
with schizophrenia. Psychopharmacology 1997, 132, 82-88.
(5) Helmeste, D. M.; Tang, S. W.; Bunney, W. E., J r.; Potkin, S. G.;
J ones, E. G. Decrease in σ but no increase in striatal dopamine
D4 sites in schizophrenic brains. Eur. J . Pharmacol. 1996, 314,
R3-R5.
(6) Quirion, R.; Bowen, W. D.; Itzhak, Y.; J unien, J . L.; Musacchio,
J . M.; Rothman, R. B., Su, T.-P.; Tam, S. W.; Taylor, D. P. A
proposal for the classification of sigma binding sites. Trends
Pharmacol. Sci. 1992, 13, 85-86.
(7) Debonnel, G.; de Montigny, C. Modulation of NMDA and
dopaminergic neurotransmissions by sigma ligands: possible
implications for the treatment of psychiatric disorders. Life Sci.
1996, 58, 721-734.
(8) Hellewell, S. B.; Bruce, A.; Feinstein, G.; Orringer, J .; Williams,
W.; Bowen, W. D. Rat liver and kidney contain high densities of
σ1 and σ2 receptors: characterization by ligand binding and
photoaffinity labeling. Eur. J . Pharmacol. Mol. Pharmacol. Sect.
1994, 268, 9-18.
(9) Wolfe, S. A., J r.; De Souza, E. B. Role of sigma binding sites in
the modulation of endocrine and immune functions. In The
sigma receptors; Itzhak, Y., Ed.; Academic Press: London, 1994;
pp 287-317.
(10) Bem, W. T.; Thomas, G. E.; Mamone, J . Y.; Homan, S. M.; Levy,
B. K.; J ohnson, F. E.; Coscia, C. J . Overexpression of σ receptors
in nonneural human tumors. Cancer Res. 1991, 51, 6558-6562.
(11) Vilner, B. J .; J ohn, C. S.; Bowen, W. D. Sigma-1 and sigma-2
receptors are expressed in a wide variety of human and rodent
tumor cell lines. Cancer Res. 1995, 55, 408-413.
(32) Matsumoto, R. R.; McCracken, K. A.; Pouw, B.; Miller, J .; Bowen,
W. D.; Williams, W.; De Costa, B. R. N-alkyl substituted analogs
of the σ receptor ligand BD1008 and traditional σ receptor
ligands affect cocaine-induced convulsions and lethality in mice.
Eur. J . Pharmacol. 2001, 411, 261-273.
(33) Matsumoto, R. R.; McCracken, K. A.; Friedman, M. J .; Pouw,
B.; De Costa, B. R.; Bowen, W. D. Conformationally restricted
analogues of BD1008 and an antisense oligodeoxynucleotide
targeting σ1 receptors produce anti-cocaine effects in mice. Eur.
J . Pharmacol. 2001, 419, 163-174.