Organic & Biomolecular Chemistry
Page 4 of 4
DOI: 10.1039/C3OB41218K
65
70
75
80
85
6
7
(a) K. Mori, K. Yamaguchi, T. Mizugaki, K. Ebitani, K. Kaneda,
Chem. Commun. 2001, 461; (b) J. W. Kim, K. Yamaguchi, N.
Mizuno, Angew. Chem., Int. Ed. 2008, 47, 9249 .
subsequent CDC reaction process, which would be oxidized to
the ketoxime D and D’ by the DDQ oxidative system.
Subsequently, the target amides 2 and 2’ as an equilibrating
mixture could be generated from the ketoxime through the
Beckmann rearrangement in the presence of acid. When the
substrates 1c and 1i were employed, pꢀAnisonitrile may be
generated through the abnormal Beckmann rearrangement.
In summary, we have developed an atomꢀefficient and
transition metalꢀfree reaction between benzyl hydrocarbons
10 and hydroxylamine hydrochloride using DDQ as a promoter to
generate corresponding amides through sp3 CꢀH and CꢀC bond
cleavage. The mechanistic study shows that the transformation
is a new process involving a heteroꢀCDC reaction with a
subsequent tandem oxidation and Beckmann rearrangement.
15 To the best of our knowledge, this is the first direct
conversion of benzyl hydrocarbons to amides without a
transition metal catalyst. Further investigation of the detailed
mechanism and application of this chemistry is currently
underway in our lab.
(a) M. Hashimoto, Y. Obora, S. Sakaguchi, Y. Ishii, J. Org.
Chem. 2008, 73, 2894; (b) S. Chandrasekhar, K. Gopalaiah,
Tetrahedron Lett. 2003, 44, 755; (c) C. Ramalingan, Y. T. Park, J.
Org. Chem. 2007, 72, 4536; (d) L. G. Donaruma, W. Z. Heldt. Org.
React. 1960, 11, 1; (e) R. E. Gawley, Org. React. 1988, 35, 14; (f) C.
Ramalingan, Y.ꢀT. Park, J. Org. Chem. 2007, 72, 4536; (g) N. A.
Owston, A. J. Parker, J. M. J. William, Org. Lett. 2007, 9, 2599.
(a) J. Aube, G. L. Milligan, J. Am. Chem. Soc. 1991, 113, 8965; (b) L.
Yao, J. Aubé, J. Am. Chem. Soc. 2007, 129, 2766; (c) H. Lebel, O.
Leogane, Org. Lett. 2005, 7, 4107; (d) J. K. Augustine, A. Bombrun,
A. B. Mandal, P. Alagarsamy, R. N. Atta, P. Selvam, Synthesis, 2011,
9, 1477; (e) T. Shioiri, K. Ninomiya, S. Yamada, J. Am. Chem.
Soc. 1972, 94, 6203.
5
8
9
(a) J. R. Martinelli, T. P. Clark, D. A. Watson, R. H. Munday, S. L.
Buchwald,.Angew Chem., Int. Ed. 2007, 46
, 8460; (b) C.
Gunanathan, Y. BenꢀDavid, D. Milstein, Science 2007, 266, 790; (c)
T. Zweifel, N.ꢀV. Naubron, H. Grutzmacher, Angew. Chem., Int. Ed.
2009, 48, 559; (d) Y. Uenoyama, T. Fukuyama, O. Nobuta, H.
Matsabara, I. Ryu, Angew. Chem,. Int. Ed. 2005, 44, 1075; (e) X. Wu,
R. Roenn, T. Gossas, M. Larhed, J. Org. Chem. 2005, 70, 3094; (f) D.
J. Knapton, T. Y. Meyer, Org. Lett. 2004, 6, 687; (g) P. Nanayakkara,
H. Alper, Chem. Commun. 2003, 2384.
20
We are grateful to the Natural Science Foundation of China
(no. 20972113/B020502) for support.
90 10 (a) F. Damkaci, P. Deshong, J. Am. Chem. Soc. 2003, 125, 4408; (b)
E. Saxon, C. R. Bertozzi, Science 2000, 287, 2007.
Notes and references
a Department of Chemistry, Tongji University, Shanghai 200092, P. R.
China. Eꢀmail: rhzhang@tongji.edu.cn
11 (a) F. Collet, R. H. Dodd, P. Dauban, Chem. Commun. 2009, 5061 ;
(b) D. N. Zalatan, J. Du Bois, Top. Curr. Chem. 2010, 292, 347; (c) T.
R. Cundari, S. Wiese, Y. M. Badiei, R. T. Gephart, S. Mossin, M. S.
95
100
105
110
Varonka, M. M. Melzer, K. Meyer, T. H. Warren, Angew. Chem., Int.
Ed. 2010, 49, 8850; (d) R. H. Fan, W. X. Li, D. M. Pu, L. Zhang, Org.
Lett. 2009, 11, 1425; (e) H. Fu, X. W. Liu, Y. M. Zhang, L. Wang, Y.
Y. Jiang, Y. F. Zhao, J. Org. Chem. 2008,73, 6207; (f) G. Pelletier, D.
A. Powell, Org. Lett. 2006, 8, 6031; (g) D. A. Powell, H. Fan, J. Org.
Chem. 2010, 75, 2726; (h) Z. Wang, Y. M. Zhang, H. Fu, Y. Y. Jiang,
Y. F. Zhao, Org. Lett. 2008, 10, 1863; (i) Y. M. Zhang, H. Fu, Y. Y.
Jiang, Y. F. Zhao, Org. Lett. 2007, 9, 3813; (j) S. G. Pan, J. H. Liu, H.
R. Li, Z. Y. Wang, X. W. Guo, Z. P. Li, Org. Lett. 2010, 12, 1932;
(k) H. M. Guo, C. Xia, H. Y. Niu, X. T. Zhang, S. N. Kong, D. C.
Wang, G. R. Qu, Adv. Synth. Catal. 2011, 353, 53; (l) Q. Xia, W.
Chen, H. Qiu, J. Org. Chem. 2011,76, 7577.
25 † Electronic Supplementary Information (ESI) available: Experiment
procedure and NMR data. See DOI: 10.1039/b000000x
1
(a) J. S. Carey, D. Laffan, C. Thomson, M. T. Williams, Org.
Biomol. Chem. 2006, 4, 2337; (b) C. L. Allen, R. Lawrence, L.
Emmett, J. M. J. Williams, Adv Synth. Catal. 2011, 353, 3262; (c) A.
Greenberg, C. M. Breneman, J. F. Liebman, The Amide Linkage:
Selected Structural Aspects in Chemistry, Biochemistry and Materials
Science, WileyꢀInterscience: New York, 2000; (d) N. Sewald, H. D.
Jakubke, Peptides: Chemistry and Biology WileyꢀVCH: Weinheim,
1996.
30
35
40
45
50
55
60
2
(a) N. Ryoki, N. Takahiro, Y. Yasuhiro, M. J. Haruo, Org. Chem.
1991, 56, 4076; (b) M. HosseiniꢀSarvari, E. Sodagar, M.
M. Doroodmand, J. Org. Chem. 2011, 76, 2853; (c) D. J. Hardee, L.
Kovalchuke, T. H. Lambert, J. Am. Chem. Soc. 2010, 132, 5002; (d)
G. E. Veitch, K. L. Bridgwood, S. V. Ley, Org. Lett. 2008,10, 3623;
(e) X. Yang, V. B. Birman, Org. Lett. 2009, 11, 1499; (f) B. R. Kim,
H. G. Lee, S. B. Kang, G. H. Sung, J. J. Kim, J. K. Park, S. G. Lee,
Y. J. Yoon, Synthesis 2012, 1, 42; (g) M. Movassaghi, M. A.
12 (a) W. Zhou, L. Zhang, N. Jiao, Angew. Chem. Int. Ed. 2009, 48,
7094; (b) C. Qin, N. Jiao, J. Am. Chem. Soc. 2010, 132, 15893
13 S. Cho, E. Yoo, I. Bae, S. Chang, J. Am. Chem. Soc. 2005, 127,
16046.
14 M. P. Cassidy, J. Raushel, V. V. Fokin, Angew. Chem., Int. Ed.
2006,45, 3154.
15 W. K. Chan, C. M. Ho, M. K. Wong, C. M. Che, J. Am. Chem. Soc.
2006, 128, 14796.
Schmidt, Org.
Lett. 2005, 7,
2373;
(h)
R.
Das,
D.
Chakraborty, Synthesis 2011, 10, 1621; (i) S. Naik, G. Bhattacharjya,
B. Talukdar, B. K. Patel, Eur. J. Org. Chem. 2004, 6, 1254; (j) S.
Chung, D. P. Uccello, H. Choi, J. I. Montgomery, J.
Chen, Synlett, 2011, 14, 2072; (k) S. T. Kadam, S. S.
Kim, Synthesis 2008, 2, 267.
(a) W. J. Yoo, C. J. Li, J. Am. Chem. Soc. 2006, 128, 13064; (b) S.
De Sarkar, A. Studer, Org. Lett. 2010, 12, 1992; (c) T. M. U. Ton, C.
Tejo, S. Tania, J. W. Chang, P. W. H. Chan, J. Org. Chem. 2011, 76,
4894; (d) V. Prasad, R. R. Kale, B. B. Mishra, D. Kumar, V.
K. Tiwari, Org. Lett. 2012, 14, 2936.
115 16 C. Qin, T. Shen, C. Tang, N. Jiao, Angew. Chem. Int. Ed. 2012, 5,
6971.
17 C. Qin, W. Zhou, F. Chen, Y. Ou, N. Jiao, Angew. Chem. Int. Ed.
2011, 50, 12595.
18 (a) R. K. Hill, R. T. Conle, J. Am. Chem. Soc. 1960, 82, 645; (b) G. P.
3
120
125
130
Moss, S. A. Nicolaid, Chemical Communication.1969,1077.
19 (a) J. Jin, Y. Li, Z. J. Wang, W. X. Qian, W. L. Bao, Eur. J. Org.
Chem. 2010, 1235; (b) D. P. Cheng, W. L. Bao, Adv. Synth. Catal.
2008, 350, 1263; (c) H. Mo, W. L. Bao, J. Org. Chem. 2010, 75,
4856. (d) Z. Wang, H. Mo, D. P. Cheng, W. L. Bao, Org. Biomol.
Chem., 2012, 10, 4249.
20 (a) Y. Li, W. L. Bao, Adv. Synth. Catal. 2009, 351, 865; (b) Y. Zhang,
C. J. Li, J. Am. Chem. Soc. 2006, 128, 4242; (c) Y. Li, B. Li, X. Lu, S.
Lin, Z, J. Shi, Angew. Chem. Int. Ed. 2009, 48, 3817.
4
5
L. Cao, J. Ding, M. Gao, Z. Wang, J. Li, A. Wu, Org. Lett. 2009, 11,
3810.
(a) C. Gunanathan, Y. BenꢀDavid, D. Milstein, Science 2007, 266,
790; (b) T. Zweifel, J. V. Naubron, H. Grützmacher, Angew. Chem.,
Int. Ed. 2009, 48, 559; (c) J. H. Dam, G. Osztrovszky, L. U.
Nordstrøm, R. Madsen, Chem.ꢀEur. J. 2010, 16 , 6820; (d) S. C.
Ghosh, S. Muthaiah, Y. Zhang, X. Xu, S. H. Hong, Adv. Synth. Catal.
2009, 351, 2643; (e) L. U. Nordstrom, H. Vogt, R. Madsen, J. Am.
Chem. Soc. 2008, 130, 17672.
21 (a) F. Chen, C. Qin, Y. X. Cui, N. Jiao, Angew. Chem. Int. Ed. 2011,
50, 11487; (b) P. B. Sampson, J. F. Honek, Org. Lett. 1999, 1, 1395;
(c) W. Zhou, J. Xu, L. Zhang, N. Jiao, Org. Lett. 2010, 12, 2888.
4
| Journal Name, [year], [vol], 00–00
This journal is © The Royal Society of Chemistry [year]