Journal of the American Chemical Society
Article
(3) For B(C6F5)3-catalyzed CO hydrosilylation, see: (a) Parks, D.
J.; Piers, W. E. J. Am. Chem. Soc. 1996, 118, 9440−9441. (b) Parks, D.
J.; Blackwell, J. M.; Piers, W. E. J. Org. Chem. 2000, 65, 3090−3098.
(4) For B(C6F5)3-catalyzed CN hydrosilylation, see: Blackwell, J.
M.; Sonmor, E. R.; Scoccitti, T.; Piers, W. E. Org. Lett. 2000, 2, 3921−
3923.
with (S)-5·THF than with 1 (days versus hours), and that
initially helped us to observe those unexpected intermediates.
We were nevertheless able to demonstrate at low catalyst
loading that the B(C6F5)3 catalysis follows the same reaction
pattern.
The new mechanistic insight profoundly influences our
thinking about enantioselective variants using chiral boranes as
the source of asymmetric induction. There is an additional
enantioselectivity-determining hydride transfer step. The
absolute configuration and the level of enantioinduction will
be set in the borohydride reduction of the silyliminium ion
(expected path) and the iminium ion (unexpected path). With
this knowledge, we do now understand the dependence of the
enantiomeric excess on conversion (remaining amine/enamine
prior to hydrolysis) and on the presence of THF as a facilitator.
And, the chiral borohydride must differentiate the enantiotopic
faces of the diastereomeric pairs (E/Z) of (silyl)iminium ions
with the same sense of asymmetric induction but the efficieny
will clearly be different for each individual (silyl)iminium ion.
We would like to close with a remark on potential
implications of the present findings on asymmetric FLP
chemistry. H−H activation by FLPs or boranes alone is less
complicated because the competing pathways are degenerate in
the sense that both proceed through the same iminium ion
intermediate as an ion pair with the borohydride.
(5) We are not aware of any FLP- or borane-catalyzed CO
hydrogenation.
(6) For FLP- and borane-catalyzed CN hydrogenation, see:
(a) Chase, P. A.; Welch, G. C.; Jurca, T.; Stephan, D. W. Angew. Chem.,
Int. Ed. 2007, 46, 8050−8053. (b) Chase, P. A.; Jurca, T.; Stephan, D.
W. Chem. Commun. 2008, 1701−1703. (c) Chen, D.; Klankermayer, J.
Chem. Commun. 2008, 2130−2131. (d) Spies, P.; Schwendemann, S.;
Lange, S.; Kehr, G.; Frohlich, R.; Erker, G. Angew. Chem., Int. Ed. 2008,
̈
47, 7543−7546. (e) Sumerin, V.; Schulz, F.; Atsumi, M.; Wang, C.;
Nieger, M.; Leskela, M.; Repo, T.; Pyykko, P.; Rieger, B. J. Am. Chem.
̈
̈
Soc. 2008, 130, 14117−14119. (f) Rokob, T. A.; Hamza, A.; Stirling,
A.; Papai, I. J. Am. Chem. Soc. 2009, 131, 2029−2036. (g) Jiang, C.;
Blacque, O.; Berke, H. Chem. Commun. 2009, 5518−5520. (h) Eros,
G.; Mehdi, H.; Papai, I.; Rokob, T. A.; Kiraly, P.; Tarkanyi, G.; Soos, T.
́
̋
́
́
́
́
́
Angew. Chem., Int. Ed. 2010, 49, 6559−6563. (i) Zhao, L.; Li, H.; Lu,
G.; Huang, F.; Zhang, C.; Wang, Z.-X. Dalton Trans. 2011, 40, 1929−
1937. (j) Heiden, Z. M.; Stephan, D. W. Chem. Commun. 2011, 47,
5729−5731. For a brief review, see: (k) Paradies, J. Synlett 2013,
777−780.
(7) For FLP- or borane-catalyzed enantioselective CN hydro-
silylation, see: (a) Chen, D.; Leich, V.; Pan, F.; Klankermayer, J.
Chem.−Eur. J. 2012, 18, 5184−5187. (b) Mewald, M.; Oestreich, M.
Chem.−Eur. J. 2012, 18, 14079−14084.
ASSOCIATED CONTENT
■
(8) For FLP- or borane-catalyzed enantioselective CN hydro-
genation, see: (a) Reference 6c. (b) Chen, D.; Wang, Y.;
Klankermayer, J. Angew. Chem., Int. Ed. 2010, 49, 9475−9478.
S
* Supporting Information
Experimental details, characterization data, and 1H, 1H/1H
COSY, 2H, 13C, 1H/13C HMQC, 1H/13C HMBC, 1H/29Si
HMQC, and 29Si DEPT NMR spectra. This material is
(c) Sumerin, V.; Chernichenko, K.; Nieger, M.; Leskela, M.; Rieger,
̈
B.; Repo, T. Adv. Synth. Catal. 2011, 353, 2093−2110. (d) Ghattas, G.;
Chen, D.; Pan, F.; Klankermayer, J. Dalton Trans. 2012, 9026−9028.
(e) Liu, Y.; Du, H. J. Am. Chem. Soc. 2013, 135, 6810−6813. For a
review, see: (f) Chen, D.; Klankermayer, J. In Frustrated Lewis Pairs II,
Expanding the Scope; Erker, G., Stephan, D. W., Eds.; Topics in
Current Chemistry 334; Springer: Heidelberg, Germany, 2013; pp 1−
26.
AUTHOR INFORMATION
Corresponding Author
■
(9) Parks, D. J.; Piers, W. E.; Yap, G. P. A. Organometallics 1998, 17,
Notes
5492−5503.
The authors declare no competing financial interest.
(10) Morrison, D. J.; Piers, W. E.; Parvez, M. Synlett 2004, 2429−
2433.
ACKNOWLEDGMENTS
■
(11) Mewald, M.; Frohlich, R.; Oestreich, M. Chem.−Eur. J. 2011, 17,
̈
This research was supported by the Cluster of Excellence
Unifying Concepts in Catalysis of the Deutsche Forschungs-
gemeinschaft (EXC 314/2). M.O. is indebted to the Einstein
Foundation (Berlin) for an endowed professorship. We thank
Dr. Sebastian Kemper and Dr. Maria Schlangen (both TU
Berlin) for expert advice with the NMR and MS measurements,
respectively. We are grateful to Dr. Hendrik Klare (TU Berlin)
for valuable discussions.
9406−9414.
(12) (a) Parks, D. J.; Spence, R. E. v H.; Piers, W. E. Angew. Chem.,
Int. Ed. Engl. 1995, 34, 809−811. (b) Reference 9.
(13) Hog, D. T.; Oestreich, M. Eur. J. Org. Chem. 2009, 5047−5056.
(14) Rendler, S.; Oestreich, M. Angew. Chem., Int. Ed. 2008, 47,
5997−6000.
(15) The purification and isolation of (S)-5 required the formation of
the weak Lewis acid/base adduct (S)-5·THF.11
(16) N-Silylated enamines are a rare class of compounds, and we are
aware of just one report where the selective transformation of imines
into N-trimethylsilylated enamines were accomplished by mild
deprotonation of trimethylsilyliminium triflates with stoichiometrically
added amine base.17 At a late stage of this project, we were able to
apply methodology that was recently developed in our laboratory18 to
the preparation of the requisite enamines 9a and 9b. Our base-free
procedure originally transforms enolizable carbonyl compounds into
silyl enol ethers along with dihydrogen gas by dehydrogenative
coupling with silanes. Its application with a minor modification to
enolizable imines (E)-6a and (E)-6b with Me2PhSiH (1.0 equiv) yields
the otherwise difficult-to-make enamines 9a and 9b in decent purity.
The NMR spectroscopic characterization further confirms our earlier
assignments (see the Supporting Information for details): Hermeke, J.
REFERENCES
■
(1) For a critical review, see: (a) Piers, W. E.; Marwitz, A. J. V.;
Mercier, L. G. Inorg. Chem. 2011, 50, 12252−12262. For a recent
article providing a comprehensive list of references of synthetic
applications of B(C6F5)3-catalyzed Si−H bond activation, see:
(b) Robert, T.; Oestreich, M. Angew. Chem., Int. Ed. 2013, 52,
5216−5218.
(2) For state-of-the-art summaries, see: (a) Frustrated Lewis Pairs I,
Uncovering and Understanding; Erker, G., Stephan, D. W., Eds.; Topics
in Current Chemistry 332; Springer: Heidelberg, Germany, 2013. (b)
Frustrated Lewis Pairs II, Expanding the Scope; Erker, G., Stephan, D.
W., Eds.; Topics in Current Chemistry 334; Springer: Heidelberg,
Germany, 2013. For an authoritative review, see: (c) Stephan, D. W.;
Erker, G. Angew. Chem., Int. Ed. 2010, 49, 46−76.
Ph.D. Thesis, Technische Universitat Berlin, Germany, Projected
̈
2015.
17545
dx.doi.org/10.1021/ja409344w | J. Am. Chem. Soc. 2013, 135, 17537−17546