1906
A. Thorarensen et al. / Bioorg. Med. Chem. Lett. 11 (2001) 1903–1906
7. (a) Saier, M. H., Jr.; Tam, R.; Reizer, A.; Reizer, J. Mol.
Microbiol. 1994, 11, 841. (b) Saier, M. H., Jr.; Paulsen, I. T.;
Sliwinski, M. K.; Pao, S. S.; Skurray, R. A.; Nikaido, H.
FASEB J. 1998, 12, 265.
8. (a) Li, M.-Z.; Srikumar, R.; Poole, K. Antimicrob. Agents
Chemother. 1998, 42, 399. (b) Schnappinger, D.; Hillen, W.
Arch. Microbiol. 1996, 165, 359.
9. Hirata, T.; Wakatabe, R.; Nielsen, J.; Satoh, T.; Nihira, S.-
I.; Yamaguchi, A. Biol. Pharm. Bull. 1998, 21, 678.
10. Hsieh, P.-C.; Siegel, S. A.; Rogers, B.; Davis, D.; Lewis,
K. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 6602.
11. Renau, T. E.; Leger, R.; Flamme, E. M.; Sangalang, J.;
She, M. W.; Yen, R.; Gannon, C. L.; Griffith, D.; Chamber-
land, S.; Lomovskaya, O.; Hecker, S. J.; Lee, V. J.; Ohta, T.;
Nakayama, K. J. Med. Chem. 1999, 42, 4928.
12. Li, X.-Z.; Zhang, L.; Poole, K. J. Antimicrob. Chemother.
2000, 45, 433.
13. Rehman, A. u.; Li, C.; Budge, L. P.; Street, S. E.; Savage,
P. B. Tetrahedron Lett. 1999, 40, 1865.
Figure 2. MIC of linezolid against E. coli K12 in the presence of three
potentiators. In the absence of the potentiator, the MIC of linezolid is
>128 mg/mL. The MIC of all of the potentiators is equal or greater
than 128 mg/mL for this strain of E. coli. The concentration of the
compounds and the MICs of linezolid are reported in mg/mL.
14. (a) Thanassi, D. G.; Suh, G. S. B.; Nikaido, H. J. Bacter-
iol. 1995, 177, 998. (b) E. coli K12 was the bacterial strain used
in these studies. Growth medium was LB plus 0.2% glucose.
Assay medium was 50 mM KPO4 pH 7.0, 1 mM MgSO4, 0.2%
glucose. Bacteria were grown at 37 ꢁC. Cells were rinsed twice
in Assay medium and re-suspended to an OD530 of 8.0. For
each assay, 1 mL of cell suspension was pre-incubated at 37 ꢁC
for 10 min and the putative pump inhibitor was added. After
30 min, radiolabeled linezolid (14C-100766) was added to a
final concentration of 30 mM, and the sample incubated an
additional 15 min. As a positive control, the known pump
inhibitor, CCCP, was added at a final concentration of
100 mM. An aliquot of cells was removed from the sample and
layered over an oil cushion of a 7:3 mix of Dow Corning 550
and Dow Corning 510. The tubes containing the oil mix and
cells were centrifuged at 14,000 rpm for 3 min. A 200 mL aliquot
of water was used to re-suspend the bacterial cells, then 4 mL
of scintillation fluid (Ultima Gold) was added. IC50 (con-
centration at which linezolid accumulation was potentiated by
50%) was calculated by determining the drug concentration at
which the accumulation of 14C-linezolid was half maximal of
that of the CCCP positive control. The per cent inhibition
(%I) was determined as follows: %I=100%Â([14C-linezolid
dpm drug treatedÀuntreated]/[14C-linezolid dpm CCCP
treatedÀuntreated]). (c) Heller, K. B.; Lin, E. C. C.; Wilson,
T. H. J. Bacteriol. 1980, 144, 274.
intracellular concentration of existing antibiotics. Sev-
eral analogues have been prepared aimed at addressing
two questions: first, the importance of the tether length
connecting the aryl ring and the piperidine ring, and
second, the importance of the 4-fluoro substituent in 1.
The results demonstrate that shortening the tether by
one carbon eliminates accumulation of linezolid, while
the three-carbon tether is significantly less potent than
the two-atom tether. Removal of the fluorine sub-
stituent had little effect on activity. These results have
allowed us to explore the importance of aryl substitu-
tion in a simpler system lacking the fluorine substituent
where we have found 3,4- and 2,5-dihalogen substitution
to be optimal.
References and Notes
15. (a) Caroon, J. M.; Clark, R. D.; Kluge, A. F.; Nelson,
J. T.; Strosberg, A. M.; Unger, S. H.; Michel, A. D.; Whiting,
R. L. J. Med. Chem. 1981, 24, 1320. (b) Bonjoch, J.; Linares,
A.; Guardia, M.; Bosch, J. Heterocycles 1987, 26, 2165.
16. Romero, A. G. Chem. Abstr. 1993, 199, 160138; EP
539209.
1. (a) Davies, J. Science 1994, 264, 375. (b) Nikaido, H.
Science 1994, 264, 382.
2. (a) Allen, N. E. In Prog. Med. Chem.; Ellis, G. P., Lus-
combe, D. K., Eds.; Elsevier Science: New York, 1995; Vol.
32, Chapter 4, pp 157–238. (b) Hayes, J. D.; Wolf, C. R. Bio-
chem. J. 1990, 272, 281.
17. Marvel, C. S.; Allen, R. E.; Overberger, C. G. J. Am.
Chem. Soc. 1946, 68, 1088.
3. Goldstein, E. J. Clin. Infect. Dis. 1996, 23, S25.
4. Barriere, J. C.; Berthaud, N.; Beyer, D.; D-Malen, S.; Paris,
J. M.; Desnottes, J. F. Curr. Pharm. Des. 1998, 4, 155.
5. Brickner, S. J.; Hutchinson, D. K.; Barbachyn, M. R.;
Manninen, P. R.; Ulanowicz, D. A.; Garmon, S. A.; Grega,
K. C.; Hendges, S. K.; Toops, D. S.; Ford, C. W.; Zurenko,
G. E. J. Med. Chem. 1996, 39, 673.
18. Rosen, T.; Taschner, M. J.; Heathcock, C. H. J. Org.
Chem. 1984, 49, 3994.
19. An accumulation assay only measures the direct increase
of intracellular concentration of radiolabel. The increased
concentration can be the result of pump inhibition or
improved import into the cell. At this stage, we are unable to
differentiate the two phenomena, but the described com-
pounds are not lytic (Stephen E. Buxser, unpublished results).
6. Nikaido, H. J. Bacteriol. 1996, 178, 5853.