Analytical Chemistry
Article
Table 1. Detection of F− in Bovine Serum Samples
(10) (a) World Health Organization. Fluoride In drinking-water;
WHO: Geneva, 2006. (b) Carton, R. J. Fluoride 2006, 39, 163−172.
(11) Frant, M. S.; Ross, J. W., Jr. Science 1966, 154, 1553−1555.
(12) (a) Black, C. B.; Andrioletti, B.; Try, A. C.; Ruiperez, C.; Sessler,
J. L. J. Am. Chem. Soc. 1999, 121, 10438−10439. (b) Miyaji, H.; Sato,
W.; Sessler, J. L. Angew. Chem., Int. Ed. 2000, 39, 1777−1780.
(c) Furuta, H.; Maeda, H.; Osuka, A. J. Am. Chem. Soc. 2001, 123,
6435−6436. (d) Kumar, S.; Luxami, V.; Kumar, A. Org. Lett. 2008, 10,
5549−5552.
sample F− added (μM)
ISE (μM)
this method (μM) recovery (%)
1
2
3
4
0
−
−
−
a
20.0
50.0
100.0
19.6 0.5
51.0 1.2
101.5 1.6
18.5 1.0
47.8 0.9
96.2 1.2
92.5
95.6
96.2
a
Mean standard deviation of three determinations.
(13) (a) Xu, S.; Chen, K.; Tian, H. J. Mater. Chem. 2005, 15, 2676−
2680. (b) Cooper, C. R.; Spencer, N.; James, T. D. Chem. Commun.
̀
1998, 1365−1366. (c) Sole, S.; Gabbaï, F. P. Chem. Commun. 2004,
and stability in the aqueous solution. Additionally, the SPS/GO
could accelerate the reaction rate of F− and silicon ether and
showed higher sensitivity and a lower detection limit for
detecting F− in comparison with most of reported fluoride
sensors. Furthermore, it showed an excellent anti-interference
ability in complicated real samples. This nanosensor showed a
great potential application in sensing analytes in a complex
system rapidly and sensitively. More importantly, this approach
could provide a new design strategy for developing a general
platform to make the water-insoluble sensors detect the
components in aqueous solution.
1284−1285. (d) Rao, M. R.; Ravikanth, M. J. Org. Chem. 2011, 76,
3582−3587.
(14) Yamaguchi, S.; Akiyama, S.; Tamao, K. J. Am. Chem. Soc. 2000,
122, 6793−6794.
(15) Kim, T. H.; Swager, T. M. Angew. Chem., Int. Ed. 2003, 42,
4803−4806.
(16) (a) Liu, X. Y.; Bai, D. R.; Wang, S. Angew. Chem., Int. Ed. 2006,
45, 5475−5478. (b) Hudnall, T. W.; Gabbaï, F. P. Chem. Commun.
2008, 4596−4597.
(17) Liu, J. B.; Yang, X. H.; Wang, K. M.; Yang, R. H.; Ji, H. N.; Yang,
L. Y.; Wu, C. L. Chem. Commun. 2011, 47, 935−937.
(18) Descalzo, A. B.; Jimen
Amoros, P.; Marcos, M. D.; Martínez-Man
Commun. 2002, 562−563.
́
ez, D.; Haskouri, J. E.; Beltran
́
, D.;
́
́
̃
ez, R.; Sotoa, J. Chem.
ASSOCIATED CONTENT
* Supporting Information
Experimental details and additional spectroscopic data as noted
in text. This material is available free of charge via the Internet
■
S
(19) (a) Yang, X. F. Spectrochim. Acta, Part A 2007, 67, 321−326.
(b) Yang, X. F.; Qi, H. P.; Wang, L. P.; Su, Z.; Wang, G. Talanta 2009,
80, 92−97. (c) Kim, S. Y.; Hong, J. I. Org. Lett. 2007, 9, 3109−3112.
(20) (a) Bao, Y. Y.; Liu, B.; Wang, H.; Tian, J.; Bai, R. Chem.
Commun. 2011, 47, 3957−3959. (b) Bozdemir, O. A.; Sozmen, F.;
Buyukcakir, O.; Guliyev, R.; Cakmak, Y.; Akkaya, E. U. Org. Lett. 2010,
12, 1400−1403.
AUTHOR INFORMATION
Corresponding Author
731-88822523.
■
(21) (a) Sokkalingam, P.; Lee, C. H. J. Org. Chem. 2011, 76, 3820−
3828. (b) Zhang, J. F.; Lim, C. S.; Bhuniya, S.; Cho, B. R.; Kim, J. S.
Org. Lett. 2011, 13, 1190−1193. (c) Ke, B. W.; Chen, W. X.; Ni, N. T.;
Cheng, Y. F.; Dai, C. F.; Dinh, H.; Wang, B. H. Chem. Commun. 2013,
49, 2494−2496.
Notes
The authors declare no competing financial interest.
(22) Kim, S. Y.; Park, J.; Koh, M.; Park, S. B.; Hong, J. I. Chem.
Commun. 2009, 4735−4737.
ACKNOWLEDGMENTS
■
(23) Hu, R.; Feng, J.; Hu, D. H.; Wang, S. Q.; Li, S. Y.; Li, Y.; Yang,
G. Q. Angew. Chem., Int. Ed. 2010, 49, 4915−4918.
We are grateful for the financial support from the National
Natural Science Foundation of China (Grants 21305036,
21075032, 21005026, 21135001, and J1103312), the Founda-
tion for Innovative Research Groups of NSFC (Grant
21221003), and the ‘‘973’’ National Key Basic Research
Program (Grant 2011CB91100-0).
(24) Xiong, L.; Feng, J.; Hu, R.; Wang, S. Q.; Li, S. Y.; Li, Y.; Yang, G.
Q. Anal. Chem. 2013, 85, 4113−4119.
(25) (a) Kong, J.; Franklin, N. R.; Zhou, C.; Chapline, M. G.; Peng,
S.; Cho, K.; Dai, H. Science 2000, 287, 622−625. (b) Cui, Y.; Wei, Q.;
Park, H.; Lieber, C. M. Science 2001, 293, 1289−1292.
(26) (a) Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K.
S.; Booth, T. J.; Roth, S. Nature 2007, 446, 60−63. (b) Novoselov, K.
S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.;
Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666−669. (c) Geim,
A. K. Science 2009, 324, 1530−1534.
REFERENCES
■
(1) Gale, P. A. Coord. Chem. Rev. 2001, 213, 79−128.
(2) Beer, P. D.; Gale, P. A. Angew. Chem., Int. Ed. 2001, 40, 486−516.
́ ́
(3) Martinez-Manez, R.; Sancenon, F. Chem. Rev. 2003, 103, 4419−
̃
(27) Zhu, Y. W.; Murali, S.; Cai, W. W.; Li, X. S.; Suk, J. W.; Potts, J.
R.; Ruoff, R. S. Adv. Mater. 2010, 22, 3906−3924.
4476.
(4) Barbier, O.; Arreola-Mendoza, L.; Del Razo, L. M. Chem.-Biol.
Interact. 2010, 188, 319−333.
(5) (a) Bowman-James, K. Acc. Chem. Res. 2005, 38, 671−678.
(b) Gale, P. A. Acc. Chem. Res. 2006, 39, 465−475.
(6) Weatherall, J. A. Pharmacology of Fluorides. In Handbook of
Experimental Pharmacology XX/1; Springer-Verlag: Berlin, Part 1,
1969; pp 141−172.
(7) Cittanova, M. L.; Lelongt, B.; Verpont, M. C. Anesthesiology 1996,
84, 428−435.
(8) Singh, P. P.; Barjatiya, M. K.; Dhing, S.; Bhatnagar, R.; Kothari,
S.; Dhar, V. Urol. Res. 2001, 29, 238−244.
(9) (a) Hutchinson, J. P.; Evenhuis, C. J.; Johns, C.; Kazarian, A. A.;
Breadmore, M. C.; Macka, M.; Hilder, E. F.; Guijt, R. M.; Dicinoski, G.
W.; Haddad, P. R. Anal. Chem. 2007, 79, 7005−7013. (b) Breadmore,
M. C.; Palmer, A. S.; Curran, M.; Macka, M.; Avdalovic, N.; Haddad,
P. R. Anal. Chem. 2002, 74, 2112−2118.
(28) (a) Lu, C. H.; Yang, H. H.; Zhu, C. L.; Chen, X.; Chen, G. N.
Angew. Chem., Int. Ed. 2009, 48, 4785−4787. (b) Balapanuru, J.; Yang,
J. X.; Xiao, S.; Bao, Q.; Jahan, M.; Polavarapu, L.; Wei, J.; Xu, Q. H.;
Loh, K. P. Angew. Chem., Int. Ed. 2010, 49, 6549−6553. (c) Jang, H. J.;
Kim, Y. K.; Kwon, H. M.; Yeo, W. S.; Kim, D. E.; Min, D. H. Angew.
Chem., Int. Ed. 2010, 49, 5703−5707. (d) Xu, Y. X.; Zhao, L.; Bai, H.;
Hong, W. J.; Li, C.; Shi, G. Q. J. Am. Chem. Soc. 2009, 131, 13490−
13497. (e) Chou, S. S.; De, M.; Luo, J.; Rotello, V. M.; Huang, J.;
Dravid, V. P. J. Am. Chem. Soc. 2012, 134, 16725−16733.
(29) (a) Wang, D. M.; Zhang, Y.; Zheng, L. L.; Yang, X. X.; Wang, Y.;
Huang, C. Z. J. Phys. Chem. C 2012, 116, 21622−21628. (b) Song, Y.
J.; Qu, K. G.; Zhao, C.; Ren, J. S.; Qu, X. G. Adv. Mater. 2010, 22,
2206−2210.
(30) (a) Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin,
A.; Zarc, S.; Dai, H. J. Nano Res. 2008, 1, 203−212. (b) Liu, Z.;
11462
dx.doi.org/10.1021/ac402592c | Anal. Chem. 2013, 85, 11456−11463