J.-T. Wu, J.-G. Zhang, X. Yin, M. Sun, T.-L. Zhang
ARTICLE
DATr·NTO (2) and DATr·TNR (3) were prepared by reacting 3,4-di-
amino-1,2,4-triazole (1) with an aqueous solution of 3-nitro-1,2,4-tri-
azole-5-one (NTO) or 2,4,6-trinitro-resresorcinol (TNR), respectively.
The mixtures were kept stirring over 15 min at 50 °C. The two title
salts were obtained by slow spontaneous crystallization, filtered off,
and washed three times with methanol.
References
[1] H. Xue, H. Gao, B. Twamley, J. M. Shreeve, Chem. Mater. 2006,
18, 4007.
[2] Y. Huang, H. X. Gao, B. Twamley, J. M. Shreeve, Eur. J. Inorg.
Chem. 2008, 16, 2560.
[3] L. He, G. H. Tao, D. A. Parrish, J. M. Shreeve, Chem. Eur. J.
2010, 16, 5736.
[4] H. X. Gao, C. F. Ye, O. D. Gutpa, J. C. Xiao, M. A. Hiskey, J. M.
Shreeve, Chem. Eur. J. 2007, 13, 3853.
[5] N. Fischer, T. M. Klapötke, D. G. Piercey, J. Stierstorfer, Z.
Anorg. Allg. Chem. 2012, 638, 302.
[6] N. Fischer, T. M. Klapötke, J. Stierstorfer, Propellants Explos.
Pyrotech. 2011, 36, 225.
[7] T. Fendt, N. Fischer, T. M. Klapötke, J. Stierstorfer, Inorg. Chem.
2011, 50, 1447.
[8] K. Wang, D. A. Parrish, J. M. Shreeve, Chem. Eur. J. 2011, 17,
14485.
[9] L. E. Fried, M. R. Manaa, P. F. Pagoria, R. L. Simpson, Annu.
Rev. Mater. Res. 2001, 31, 291.
Instruments and Determination Conditions: The infrared spectra
were recorded by Fourier transform techniques with a Bruker Equinox
55 spectrometer with KBr pellets. Differential scanning calorimeter
(DSC) and thermo-gravimetric analysis (TGA) were carried out with
a model Pyris-1 differential scanning calorimeter and a model Pyris-1
thermogravimetric analyzer in a dry oxygen-free nitrogen atmosphere
with a flow rate of 20 mL·min–1. The amount of compound used for
testing DSC and TGA was 0.5 mg, but because of a thermal explosion
of compound 2 (0.5 mg) during TG test, we repeated the TGA test
with only 0.3 mg of 2 (Figure 5a).
[10] H. X. Gao, J. M. Shreeve, Chem. Rev. 2011, 111, 7377.
[11] N. B. Colthup, L. H. Daly, S. E.Wiberley, Introduction to Infrared
and Raman Spectroscopy, 3rd ed., Academic Press, 1990.
[12] M. H. Keshavarz, J. Hazard. Mater. 2009, 135, 1296.
[13] Y. Q. Zhang, Y. Guo, Y. H. Joo, D. A. Parrish, J. M. Shreeve,
Chem. Eur. J. 2010, 16, 10778.
[14] D. D. Diaz, S. Punna, P. Holzer, A. K. Mcpherson, K. B.
Sharpless, V. V. Fokin, M. G. Finn, J. Polym. Sci. Part A 2004,
42, 4392.
The single crystals of 2 and 3 were cultured by slowly solvent evapora-
tion method. Collection of X-ray diffractions data of 2 and 3 was per-
formed with a Rigaku Saturn 724+ CCD diffractometer (Mo-Kα radia-
tion, graphite monochromator). The structure was solved using the di-
rect methods and successive Fourier difference syntheses (SHELXS-
97)[17] refined using full-matrix least-squares on F2 with anisotropic
thermal parameters for all non-hydrogen atoms (SHELXL-97).[18] Hy-
drogen atoms were added theoretically and refined with riding model
position parameters and fixed isotropic thermal parameters. Detailed
information concerning crystallographic data collection and structure
refinement are summarized in Table 3.
[15] Z. T. Liu, Y. L. Lao, Initiation Explosive Experimental. Beijing
Institute of Technology, P. R. China, 1995.
[16] K. Emilsson, K. Luthman, H. Selander, Eur. J. Med. Chem. 1986,
21, 235.
[17] G. M. Sheldrick, SHELXS-97, Program for the Solution of Crystal
Structure, University of Göttingen, Germany, 1997.
[18] G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Re-
finement from Diffraction Data, University of Göttingen, Ger-
many, 1997.
Acknowledgements
[19] A. Becke, J. Chem. Phys. 1993, 98, 5648.
[20] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
We gratefully acknowledge the Program for New Century Excellent
Talents in University (No. NCET-09–0051), the Project of State Key
Laboratory of Science and Technology (Nos. QNKT11–06 and
ZDKT12–03).
Received: May 16, 2013
Published Online: July 23, 2013
2358
© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Z. Anorg. Allg. Chem. 2013, 2354–2358