546
S. Yoopensuk et al. / Spectrochimica Acta Part A 86 (2012) 538–546
During a positive scan (0–1.8 V), two signals are obtained. The
Appendix A. Supplementary data
first signal, an obvious quasi-reversible couple, is observed at
electrochemical reaction. The reversal scan does not give an obvi-
ous cathodic peak potential. This redox couple is assigned to the
dialkylamino substituent. Furthermore, comparing with the cyclic
voltammograms of nitrosoaniline (Fig. 8c), a starting material,
this quasi-reversible couple is due to –NR2/[–NR2]+oxidation. The
quasi-reversible couple of nitrosoaniline appears at a similar poten-
tial. This behavior is different from azpy. On scanning in the same
positive potential range, we observe no couple in the voltammo-
gram of azpy.
Because the -accepting property of a compound can be judged
from a high reduction potential, it is worth noting that dmazpy
and deazpy are better -acceptors than azpy. Although the LUMO
energy of azpy is lower than the two substituent compounds, the
HOMO energy of dmazpy and deazpy are higher than that of azpy.
The calculated molecular orbital energy diagram (see Fig. 5) also
confirms this trend. We therefore conclude that the -acidity of
dmazpy and deazpy is greater than that of azpy which leads to
them being stronger -backbonding ligands in transition metal
complexes.
Supplementary data associated with this article can be found, in
References
[1] T. Nakamura, T. Shibusawa, Textile Res. J. 70 (2000) 801–809.
[2] R. Bianchini, G. Catelani, R. Cecconi, F. D’Andrea, E. Frino, J. Isaad, M. Rolla,
Carbohydr. Res. 343 (2008) 2067–2074.
[3] W.M. Gibbons, P.J. Shannon, S.-T. Sun, B.J. Swetlin, Nature 351 (1991) 49–50.
[4] M.S. Ho, A. Natansohn, P. Rochon, Macromolecules 28 (1995) 6124–6127.
[5] K.R. Millington, K.W. Fincher, A.L. King, Solar Energy Mater. Solar Cells 91 (2007)
1618–1630.
[6] Z. Lei, A. Vaidyalingam, P.K. Dutta, J. Phys. Chem. B 102 (1998) 8557–8562.
[7] H. Rau, Photoreactive Organic Thin Films, Academic Press, San Diego, 2002, pp.
3–47.
[8] H. Rau, S. Yu-Quan, J. Photochem. Photobiol. A: Chem. 42 (1988) 321–327.
[9] H. Satzger, S. Spörlein, C. Root, J. Wachtveitl, W. Zinth, P. Gilch, Chem. Phys.
Lett. 372 (2003) 216–223.
[10] H. Dinc¸ alp, S. Yavuz, Ö. HaklI, C. Zafer, C. Özsoy, I. Durucasu, Si. Ic¸ li, J. Photochem.
Photobiol. A: Chem. 210 (2010) 8–16.
[11] H. Joshi, F.S. Kamounah, C. Gooijer, G. van der Zwan, L. Antonov, J. Photochem.
Photobiol. A: Chem. 152 (2002) 183–191.
[12] L. Angiolini, T. Benelli, L. Giorgini, F.M. Raymo, Polymer 50 (2009) 5638–5646.
[13] M.Z. Al-Noaimi, R.J. Abdel-Jalil, S.F. Haddad, R.H. Al-Far, R.J. Crutchley, Inorg.
Chim. Acta 359 (2006) 2395–2399.
[14] P. Pratihar, T.K. Mondal, A.K. Patra, C. Sinha, Inorg. Chem. 48 (2009) 2760–
2769.
[15] R.A. Krause, K. Krause, Inorg. Chem. 19 (1980) 2600–2603.
[16] P. Byabartta, P.K. Santra, T.K. Misra, C. Sinha, C.H.L. Kennard, Polyhedron 20
(2001) 905–913.
4. Conclusions
[17] T.K. Mondal, J. Dinda, A.M.Z. Slawin, J. Derek Woollins, C. Sinha, Polyhedron 26
(2007) 600–606.
[18] T.A. Liss, J. Org. Chem. 32 (1967) 1146–1150.
[19] H.A. Gazzaz, E. Ember, A. Zahl, R. van Eldik, Dalton Trans. (2009) 9486–9495.
[20] A.F.A. Peacock, A. Habtemariam, S.A. Moggach, A. Prescimone, S. Parsons, P.J.
Sadler, Inorg. Chem. 46 (2007) 4049–4059.
[21] S.J. Dougan, M. Melchart, A. Habtemariam, S. Parsons, P.J. Sadler, Inorg. Chem.
45 (2006) 10882–10894.
[22] Y. Onoe, S. Tsukahara, H. Watarai, Bull. Chem. Soc. Jpn. 71 (1998) 603–608.
[23] S.J. Dougan, A. Habtemariam, S.E. McHale, S. Parsons, P.J. Sadler, Proc. Natl. Acad.
Sci. U. S. A. 105 (2008) 11628–11633.
[24] N. Leesakul, S. Yoopensuk, C. Pakawatchai, S. Saithong, K. Hansongnern, Acta
Crystallogr. E: Struct. Rep. Online 66 (2010) o1923.
4-(2-Pyridylazo)-N,N-dimethylaniline (dmazpy) and 4-(2-
pyridylazo)-N,N-diethylaniline (deazpy) were synthesized and
characterized. The dmazpy and deazpy are stable at room tem-
perature (300 K). The compound structures have been confirmed
by single X-ray diffraction, spectroscopic techniques and electro-
chemical studies. The trans configuration around N N is found to
be a stable form of both compounds in the ground state. However,
the trans-form can be converted to cis-form upon irradiation. This
is evidenced by the difference of excitation and absorption spec-
trum and confirmed by the calculated vertical excitation energy
of the cis-form. The HOMO is mainly at the phenyl and –NR2
substituents. Owing to the planarity of pyridine and phenyl rings,
the electrons can delocalize to the LUMO which mainly has an azo
(–N N–) character. The HOMO → LUMO transition is characterized
as a phenyl → azoimine transition. Cyclic voltammograms indicate
the greater reduction ability of deazpy and dmazpy than that
of azpy which can stabilize the transition metal ion. From their
electrochemical and photo-physical properties, we believe that
dmazpy and deazpy should be considered as potential candidates
for use as photo-active dyes and as ligands for transition metal
complexes in photoharvesting applications.
[25] N. Leesakul, unpublished result.
[26] Y. Li, Z.-Y. Lin, W.-T. Wong, Eur. J. Inorg. Chem. 2001 (2001) 3163–3173.
[27] A. Ohashi, T. Tsukuda, H. Watari, Anal. Sci. 19 (2003) 1085–1086.
[28] G. Sheldrick, Appl Catal. A 64 (2008) 112–122.
[29] S. Landgraf, Spectrochim. Acta A 57 (2001) 2029–2048.
[30] A.P. Scott, L. Radom, J. Phys. Chem. 100 (1996) 16502–16513.
[31] J.P. Merrick, D. Moran, L. Radom, J. Phys. Chem. A 111 (2007) 11683–11700.
[32] N. Rega, M. Cossi, V. Barone, J. Chem. Phys. 105 (1996) 11060.
[33] K.W. Wiitala, T.R. Hoye, C.J. Cramer, J. Chem. Theory Comput.
1085–1092.
2 (2006)
[34] R. Jain, T. Bally, P.R. Rablen, J. Org. Chem. 74 (2009) 4017–4023.
[35] M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, J. Mont-
gomery, T. Vreven, K. Kudin, J. Burant, J. Millam, S. Iyengar, J. Tomasi, V. Barone,
B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. Petersson, H. Nakatsuji, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, M. Klene, X. Li, J. Knox, H. Hratchian, J. Cross, V. Bakken, C.
Adamo, J. Jaramillo, R. Gomperts, R. Stratmann, O. Yazyev, A. Austin, R. Cammi,
C. Pomelli, J. Ochterski, P. Ayala, K. Morokuma, G. Voth, P. Salvador, J. Dannen-
berg, V. Zakrzewski, S. Dapprich, A. Daniels, M. Strain, O. Farkas, D. Malick, A.
Rabuck, K. Raghavachari, J. Foresman, J. Ortiz, Q. Cui, A. Baboul, S. Clifford, J.
Cioslowski, B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Martin,
D. Fox, T. Keith, A. Laham, C. Peng, A. Nanayakkara, M. Challacombe, P. Gill, B.
Johnson, W. Chen, M. Wong, C. Gonzalez, J. Pople, Gaussian 03, Revision C.02,
Gaussian Inc., 2003.
[37] K. Panneerselvam, K. Hansongnern, N. Rattanawit, F.-L. Liao, T.-H. Lu, Anal. Sci.
16 (2000) 1107–1108.
[38] G.A. Reynolds, K.H. Drexhage, Opt. Commun. 13 (1975) 222–225.
[39] S.I. Kotelevskiy, J. Lumin. 79 (1998) 211–214.
[40] A. Rosspeintner, G. Angulo, M. Weiglhofer, S. Landgraf, G. Grampp, J. Pho-
tochem. Photobiol. A: Chem. 183 (2006) 225–235.
Acknowledgements
N.L. acknowledges financial support from the Center for Inno-
vation in Chemistry (PERCH–CIC), the Commission on Higher
Education, and the Ministry of Education. Ms. Sriwipha Onganu-
sorn is acknowledged for supplying compound in ES-MS and CHN
analysis. Y.T. is grateful to the National Nanotechnology Center
(to NANOSIM) and the Thailand Research Fund (RSA-5180010) for
financial support and HPC services, NECTEC for computing facilities.
S.Y. is grateful for a TGIST scholarship from the National Science
and Technology Development Agency. We thank the Department
of Chemistry, Wollongong University, Australia for ES-MS mea-
surements and the Department of Chemistry, University of Bristol,
England for elemental analysis. Finally, we thank Michael A. Allen
for his proofreading.
[41] S. Goswami, R. Mukherjee, A. Chakravorty, Inorg. Chem. 22 (1983) 2825–2832.
[42] T. Mathur, J. Dinda, P. Datta, G. Mostafa, T.-H. Lu, C. Sinha, Polyhedron 25 (2006)
2503–2512.