Please do not adjust margins
Organic & Biomolecular Chemistry
Page 5 of 7
DOI: 10.1039/C8OB00907D
Journal Name
COMMUNICATION
Based on the above results and those of previous reports,18
a plausible mechanism is proposed as illustrated in Scheme 3.
First, Cu(0) coordinates with the substrate to give complex 1a
(c) T.-S. Mei, X. Wang and J.-Q. Yu, J. Am. Chem. Soc., 2009,
131, 10806; (d) S. Bhunia, G. G. Pawar, S. V. Kumar, Y.-W.
Jiang and D.-W. Ma, Angew. Chem., Int. Ed., 2017, 56
16136.
,
that reacts with O2 to give bidentate chelating complex (
endowed with a Cu(I) centre, together with the generation of
H2O. After reacting with O2, is converted to Cu(II) species
A)
4
(a) K. Arnold, B. Davies, D. Hérault and A. Whiting, Angew.
Chem., Int. Ed., 2008, 47, 2673; (b) H. Charville, D. Jackson,
G. Hodges and A. Whiting, Chem. Commun., 2010, 46, 1813;
(c) C. L. Allen, A. R. Chhatwal and J. M. J. Williams, Chem.
Commun., 2012, 48, 666; (d) K. Ishihara and Y. Lu, Chem.
A
B,
which upon transmetalation with PhB(OH)2 produces complex C.
Then, undergoing disproportionation or oxidation reaction with O2,
Sci., 2016, 7, 1276; (e) J. R. Dunetz, J. Magano and G. A.
complex
C yields Cu(III) complex D that undergoes smooth
Weisenburger, Org. Process Res. Dev., 2016, 20, 140; (f) R.
M. de Figueiredo, J.-S. Suppo and J.-M. Campagne, Chem.
Rev., 2016, 116, 12029; (g) H. Lundberg, F. Tinnis, N.
Selander and H. Adolfsson, Chem. Soc. Rev., 2014, 43, 2714;
(h) T. Mohy El Dine, W. Erb, Y. Berhault, J. Rouden and J.
Blanchet, J. Org. Chem., 2015, 80, 4532.
reductive elimination to deliver product 3a with concurrent
formation of low-valence Cu(I) species. The latter can be easily
oxidized with O2 to produce Cu(II) species E, restricting the whole
reaction as a result.
5
6
(a) W.-J. Yoo and C.-J. Li, J. Am. Chem. Soc., 2006, 128,
13064; (b) G. N. Papadopoulo and C. G. Kokotos, J. Org.
Chem., 2016, 81, 7023; (c) S. C. Ghosh, J. S. Y. Ngiam, A. M.
Seayad, D. T. Tuan, C. L. L. Chai and A. Chen, J. Org. Chem.,
2012, 77, 8007; (d) P. Subramanian, S. Indu and K. P.
Kaliappan, Org. Lett., 2014, 16, 6212; (e) S. S. R. Gupta, A. V.
Nakhate, K. B. Rasal, G. P. Deshmukh and L. K. Mannepalli,
New J. Chem., 2017, 41, 15268.
Conclusions
In conclusion, we have developed an efficient method for
aminoquinoline-assisted
C–N
cross-coupling
of
phosphinamides and readily available aryl boronic acids with
copper powder under mild conditions. The reaction proceeds
(a) T. T. Nguyen and K. L. Hull, ACS Catal., 2016, 6, 8214; (b)
efficiently with
a wide array of boronic acids and
T. Higuchi, R. Tagawa, A. Iimuro, S. Akiyama, H. Nagae and K.
Mashima, Chem.-Eur. J., 2017, 23, 12795; (c) K. Yamaguchi,
H. Kobayashi, T. Oishi and N. Mizuno, Angew. Chem., Int.
Ed., 2012, 51, 544.
(a) Z.-W. Chen, H.-F. Jiang, X.-Y. Pan and Z.-J. He,
Tetrahedron, 2011, 67, 5920; (b) S. H. Cho, E. J. Yoo, I. Bae
and S Chang, J. Am. Chem. Soc., 2005, 127, 16046.
(a) P. Marce´, J. Lynch, A. J. Blackerb and J. M. J. Williams,
Chem. Commun., 2016, 52, 1436; (b) Y. Li, H. Chen, J. Liu, X.
Wan and Q. Xu, Green Chem., 2016, 18, 4865; (c) J. Li, G.
Tang, Y. Wang, Y. Wang, Z. Li and H. Li. New J. Chem., 2016,
40, 358; d) R. S. Ramon, N. Marion and S. P. Nolan, Chem.
Eur. J., 2009, 15, 8695.
phosphinamides to afford the corresponding products in up
to 96% yield. The wide substrate scopes and simple operation
demonstrates that the protocol opens a practical avenue for
C–N cross-coupling. Further investigations of the application
7
8
of
fully
substituted
unsymmetrical
N-arylation
phosphinamides are currently underway in our laboratory.
Acknowledgements
The authors thank the National Natural Science Foundation
of China (Nos. 21676076, 21725602), and Hunan Youth Talent
(2016RS3023). The authors thank Prof. Nobuaki Kambe
(Osaka University) for helpful discussion. C.T. Au thanks HNU
(Hunan University) for an adjunct professorship.
9
(a) J. F. Hartwig, Angew. Chem., Int. Ed., 1998, 37, 2046; (b)
D. S. Surry and S. L. Buchwald, Chem. Sci., 2011,
Y. Kwong and S. L. Buchwald, Org. Lett., 2003,
Giri, A. Brusoe, K. Troshin, J. Y. Wang, M. Font and J. F.
2, 27; (c) F.
5, 793; (d) R.
Hartwig, J. Am. Chem. Soc., 2018, 140, 793; (e) W. Zhou, M.
Fan, J. Yin, Y. Jiang and D.Ma, J. Am. Chem. Soc., 2015, 137
11942; (f) D. S. Surry, S. L. Buchwald, D. S. Surry and S. L.
Buchwald, Angew. Chem., Int. Ed., 2008, 47, 6338.
,
Notes and references
10 (a) J. C. Vantourout, R. P. Law, A. Isidro-Llobet, S. J. Atkinson
and A. J. B. Watson, J. Org. Chem., 2016, 81, 3942; (b) S.
Roy, M. J. Sarma, B. Kashyap and P. Phukan, Chem.
Commun., 2016, 52, 1170; (c) J. C. Vantourout, H. N. Miras,
A. Isidro-Llobet, S. Sproules and A. J. B. Watson, J. Am.
Chem. Soc., 2017, 139, 4769; (d) D. M. T. Chan, K. L.
Monaco, R. P. Wang and M. P. Winters, Tetrahedron Lett.,
1998, 39, 2933; (e) A. S. Reddy, K. R. Reddy, D. N. Rao, C. K.
Jaladanki, P. V. Bharatam, P. Y. S. Lam and P. Das, Org.
Biomol. Chem., 2017, 15, 801.
11 (a) N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457; (b)
S.-D. Yang, C.-L. Sun, Fang, Z.; B.-J. Li, Y.-Z. Li and Z.-J. Shi,
Angew. Chem., Int. Ed., 2008, 47, 1473; (c) C.-L. Sun, B.-J. Li
and Z.-J. Shi, Chem. Commun., 2010, 46, 677; (d) P.-Q.
Huang and H. Chen, Chem. Commun., 2017, 53, 12584; (e) C.
1
(a) R. L. Olsson, I. Jacobson, J. Boström, T. Fex, A. Björe, C.
Olsson, J. Sundell, U. Gran, A. Öhrn, A. Nordin, J. Gyll, M.
Thorstensson, A. Hayen, K. Aplander, O. Hidestal, F. Jiang,
G. Linhardt, E. Forsström, T. Collins, M. Sundqvist, E.
Lindhart, A. Astrand and B. Löfberg, Bioorg. Med. Chem.
Lett., 2013, 23, 706; (b) Y. Tao, J. Xiao, C. Zheng, Z. Zhang, M.
Yan, R. Chen, X. Zhou, H. Li, Z. An, Z. Wang, H. Xu and W.
Huang, Angew. Chem., Int. Ed., 2013, 52, 10491; (c) I.
Fernández, Ruiz Gómez, M. J. Iglesias, F. L
Álvarez-Manzaneda, ArkiVoc, 2005, , 375; (d) E. Ślusarska
and A. Zwierzak, Synthesis, 1980, , 717; (e) A. M. Jardine, S.
ópez-Ortiz and R.
9
9
M. Vather and T. A. Modro, J. Org. Chem., 1988, 53, 3983; (f)
R. Nallagonda, N. Thrimurtulu and C. M. Volla, Adv. Synth.
Catal., 2018, 360, 255.
(a) V. Werner, M. Ellwart, A. J. Wagner and P. Knochel, Org.
Lett., 2015, 17, 2026; (b) K. Vögerl, D. N. Ong and F. Bracher,
Synthesis, 2018, 50, 1323; (c) Y. M. Kim, S. Lee, S. H. Kim, K.
H. Kim and J. N. Kim, Tetrahedron Lett., 2010, 51, 5922; (d)
L. Zhong, Q. Su, J. Xiao, Z. Peng, W. Dong, Y. Zhang and D.
2
3
Lei, Y. J. Yp and J. S. Zhou, J. Am. Chem. Soc., 2017, 139
,
6086; (f) Y. Xu, Q. Su, W. Dong, Z. Peng, and D. An,
Tetrahedron, 2017, 73, 4602.
12 (a) G. He, Y. Zhao, S. Zhang, C. Lu and G. Chen, J. Am. Chem.
Soc., 2012, 134, 3; (b) X. Ye, Z. He, T. Ahmed, K. Weise, N. G.
Akhmedov, J. L. Petersena and X. Shi, Chem. Sci., 2013, 4,
An, Asian J. Org. Chem., 2017, 6, 1072.
(a) P. Müller and C. Fruit, Chem. Rev., 2003, 103, 2905; (b)
H. M. L. Davies and J. R. Manning, Nature, 2008, 451, 417;
3712; (c) G. He, S.-Y. Zhang, W. A. Nack, Q. Li and G. Chen,
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins