ACS Catalysis
Research Article
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental details and characterizations of all compounds,
TGA, IR, and pore size distribution profile. This material is
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
Figure 8. Recyclability test of Au-NHC@POPs1 in the model of
phenylacetylene hydration: (a) 1 mmol of alkyne substrate and (b) 3
mmol of alkyne substrate.
ACKNOWLEDGMENTS
■
This work was supported by the Chinese Academy of Sciences
and the National Natural Science Foundation of China
(21002106 and 21133011).
decline in acetophenone yields. Analysis of the aqueous
reaction solution after each cycle by ICP-AES showed Au
element leaching did not reach the detection limit of 1 mg/L.
Moreover, when the recycling experiment had been completed,
the filtrate was used solely as the reaction medium without
adding the heterogeneous Au-NHC@POPs1, and then the
substrates were added to the reaction system to continue the
reaction. The result showed that the GC yield of acetophenone
was almost constant, which ensured the heterogeneous nature
of the catalytic process.
REFERENCES
■
(1) Cole-Hamilton, D. J. Science 2003, 299, 1702.
(2) Robinson, A. L. Science 1976, 194, 1261.
(3) Zhu, F. X.; Wang, W.; Li, H. X. J. Am. Chem. Soc. 2011, 133,
11632.
(4) Zhou, H.; Wang, Y. M.; Zhang, W. Z.; Qu, J. P.; Lu, X. B. Green
Chem. 2011, 13, 644.
(5) Yang, H. Q.; Li, G.; Ma, Z. C.; Chao, J. B.; Guo, Z. Q. J. Catal.
2010, 276, 123.
(6) Allen, D. P.; Wingerden, M. M. V.; Grubbs, R. H. Org. Lett. 2009,
It is worth noting that the IR spectral measurement of Au-
NHC@POPs1 after reaction with pure water or a combination
of water and methanol (1:2 volume ratio) produced almost the
same spectrum of fresh Au-NHC@POPs1; no carbonyl group,
which is generated from the hydration of the alkyne skeleton of
this POPs catalyst, was observed (see Figures S7 and S8 of the
Supporting Information). This is additional strong evidence of
the hydrothermal stability of Au-NHC@POPs and Au elements
that could not be easily separated from the POPs. Moreover, it
is possible because of the structural rigidity of the framework
that the Au sites cannot easily reach the alkyne groups of the
Au-NHC@POPs. In addition, XPS characterization of Au-
NHC@POPs1 after catalytic runs showed the well-retained
state of Au-NHC catalytic species (Figure S9 of the Supporting
Information).
11, 1261.
(7) Qiu, H.; Sarkar, S. M.; Lee, D. H.; Jin, M. J. Green Chem. 2008,
10, 37.
(8) Yang, H.; Wang, Y.; Qin, Y.; Chong, Y.; Yang, Q.; Li, G.; Zhang,
L.; Li, W. Green Chem. 2011, 13, 1352.
(9) Wittmann, S.; Schatz, A.; Grass, R. N.; Stark, W. J.; Reiser, O.
Angew. Chem., Int. Ed. 2010, 49, 1867.
(10) Ranganath, K. V. S.; Kloesges, J.; Schafer, A. H.; Glorius, F.
Angew. Chem., Int. Ed. 2010, 49, 7786.
(11) Gruttadauria, M.; Giacalone, F.; Noto, R. Chem. Soc. Rev. 2008,
37, 1666.
(12) Kaur, P.; Hupp, J. T.; Nguyen, S. T. ACS Catal. 2011, 1, 819.
(13) Mckeown, N. B.; Budd, P. M. Chem. Soc. Rev. 2006, 35, 675.
(14) Cooper, A. I. Adv. Mater. 2009, 21, 1291.
(15) Wang, Z.; Chem, G.; Ding, K. L. Chem. Rev. 2009, 109, 322.
(16) Trewin, A.; Cooper, A. I. Angew. Chem., Int. Ed. 2010, 49, 1533.
(17) Jiang, J. X.; Su, F. B.; Trewin, A.; Wood, C. D.; Campbell, N. L.;
Niu, H. J.; Dickinson, C.; Ganin, A. Y.; Rosseinsky, M. J.; Khimyak, Y.
Z.; Cooper, A. I. Angew. Chem., Int. Ed. 2007, 46, 8574.
(18) Schmidt, J.; Weber, J.; Epping, J. D.; Antonietti, M.; Thomas, A.
Adv. Mater. 2009, 21, 702.
(19) Ben, T.; Ren, H.; Ma, S. Q.; Cao, D.; Lan, J. H.; Jing, X. F.;
Wang, W. C.; Xu, J.; Deng, F.; Simmons, J. M.; Qiu, S.; Zhu, G. S.
Angew. Chem., Int. Ed. 2009, 48, 9457.
(20) Chen, L.; Honsho, Y.; Seki, S.; Jiang, D. L. J. Am. Chem. Soc.
2010, 132, 6742.
(21) Wu, C. D.; Hu, A.; Zhang, L.; Lin, W. B. J. Am. Chem. Soc. 2005,
127, 8940.
(22) Song, F. J.; Wang, C.; Falkowski, J. M.; Ma, L. Q.; Lin, W. B. J.
Am. Chem. Soc. 2010, 132, 15390.
(23) Ding, S. Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548.
(24) Feng, X.; Ding, X. S.; Jiang, D. L. Chem. Soc. Rev. 2012, 41,
6010.
(25) Ding, S. Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W. G.; Su, C. Y.;
Wang, W. J. Am. Chem. Soc. 2011, 133, 19816.
(26) Tanabe, K. K.; Siladke, N. A.; Broderick, E. M.; Kobayashi, T.;
Goldston, J. F.; Weston, M. H.; Farha, O. K.; Hupp, J. T.; Pruski, M.;
Mader, E. A.; Johnson, M. J. A.; Nguyen, S. T. Chem. Sci. 2013, 4,
2483.
̈
̈
4. CONCLUSION
In summary, for the first time, we have successfully prepared a
series of catalytic POPs materials (Au-NHC@POPs) with the
Au-NHC complex as building-in feedstock; their surface areas
and pore size distribution can be tuned not only by the
monomer structure but also through concentration control, and
a model assumption of the branch−branch cross effect was
proposed to explain the synthetic control. These Au-NHC@
POPs have been found to be efficient heterogeneous catalysts
for alkyne hydration reactions with good substrate tolerance
and could be reused at least five times without a significant loss
of catalytic efficiency. Control experiments with the larger
alkyne proved the pore sized effect could severely impact the
catalytic activity of a specific molecule. In addition, Au-NHC@
POPs have good hydrothermal stability. These unique
characteristics clearly indicate that POP catalysts based on
covalently and homogeneously active metal-NHC sites could
provide new potential in the exploration of built-in
heterogeneous catalysts and their applications in sustainable
catalyses.
326
dx.doi.org/10.1021/cs400983y | ACS Catal. 2014, 4, 321−327