Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
(a) B. Chen, L. Z. Wu and C. H. Tung, AcDcO. CI:h1e0m.10.3R9e/Ds.0,C2C001585,8501H,
2512. (b) J. J. Zhong, Q. Y. Meng, B. Chen, C. H. Tung and L. Z.
Wu, Acta Chim. Sinica, 2017, 75, 34. (c) J. J. Zhong, Q. Y. Meng,
B. Liu, X. B. Li, X. W. Gao, T. Lei, C. J. Wu, Z. J. Li, C. H. Tung and
L. Z. Wu, Org. Lett., 2014, 16, 1988. (d) Q. Y. Meng, J. J. Zhong,
Q. Liu, X. W. Gao, H. H. Zhang, T. Lei, Z. J. Li, K. Feng, B. Chen,
C. H. Tung and L. Z. Wu, J. Am. Chem. Soc., 2013, 135, 19052.
(e) X. W. Gao, Q. Y. Meng, J. X. Li, J. J. Zhong, T. Lei, X. B. Li, C.
H. Tung and L. Z. Wu, ACS Catal., 2015, 5, 2391. (f) G. Zhang,
C. Liu, H. Yi, Q. Meng, C. Bian, H. Chen, J. X. Jian, L. Z. Wu and
A. Lei, J. Am. Chem. Soc., 2015, 137, 9273. (g) Y. W. Zheng, B.
Chen, P. Ye, K. Feng, W. Wang, Q. Y. Meng, L. Z. Wu and C. H.
Tung, J. Am. Chem. Soc., 2016, 138, 10080. (h) W. Q. Liu, T. Lei,
S. Zhou, X. L. Yang, J. Li, B. Chen, J. Sivaguru, C. H. Tung and L.
Z. Wu, J. Am. Chem. Soc., 2019, 141, 13941.
(a) H. Wang, X. Gao, Z. Lv, T. Abdelilah and A. Lei, Chem. Rev.,
2019, 119, 6769. (b) G. Zhang, L. Zhang, H. Yi, Y. Luo, X. Qi, C.
H. Tung, L. Z. Wu and A. Lei, Chem. Commun., 2016, 52, 10407.
(c) S. Tang, L. Zeng and A. Lei, J. Am. Chem. Soc., 2018, 140,
13128. (d) K. H. He and Y. Li, ChemSusChem, 2014, 7, 2788. (e)
K. H. He, F. F. Tan, C. Z. Zhou, G. J. Zhou, X. L. Yang and Y. Li,
Angew. Chem. Int. Ed., 2017, 56, 3080. (f) H. Cao, H. M. Jiang,
H. Y. Feng, J. M. C. Kwan, X. G. Liu and J. Wu, J. Am. Chem. Soc.,
2018, 140, 16360. (g) X. Sun, J. T. Chen and T. Ritter, Nat.
Chem., 2018, 10, 1229. (h) W. L. Yu, Y. C. Luo, L. Yan, D. Liu, Z.
Y. Wang and P. F. Xu, Angew. Chem. Int. Ed., 2019, 58, 10941.
(a) G. N. Schrauzer, Acc. Chem. Res., 1968, 1, 97. (b) G.
Pattenden, Chem. Soc. Rev., 1988, 17, 361. And references
therein.
revealing that herein other pathways to generate Co(III) could
also happen. Due to that the excess of methacrylate is
necessary in the reaction, we speculated b1 might compete
with proton to react with Co(III)-H to generate some reductive
byproduct and Co(III). Subsequent single electron transfer from
reductive 4-CzIPN- to Co(III) regenerates both photoredox
catalytic cycle and cobaloxime catalytic cycle. A plausible
mechanism for alkyl ketones synthesis is also described in
Scheme S3. Without cobaloxime catalyst, the new alkyl radical
species A is directly reduced by the reductive 4-CzIPN- to alkyl
anion species C. Protonation of C furnishes the alkyl ketones.
In summary, we have described a photoredox/cobaloxime
cocatalyzed dehydrogenative cross-coupling of α-ketoacids and
methacrylate derivatives for the synthesis of allylic ketones.
Interestingly, the products could be selectively achieved by
controlling the catalytic system. When the cobaloxime catalyst
was removed, the corresponding alkyl ketones rather than
allylic ketones were produced via photoredox catalysis. Herein,
cobaloxime catalyst enables a dehydrogenation to new olefins
formation. The generality, good substrate scope and mild
reaction conditions features the dual photoredox/cobaloxime
catalysis protocol. We believe that this protocol will provide
opportunities for more radical-involved olefin functionalization
reactions, which is undergoing in our laboratory.
4
5
6
7
The authors gratefully acknowledge for the financial support
from the National Natural Science Foundation of China
(21801163, 21702213), STU Scientific Research Foundation for
Talents (NTF18003) and the Guangdong Province Universities
and Colleges Pearl River Scholar Funded Scheme 2019
(GDUPS2019).
(a) J. L. Dempsey, B. S. Brunschwig, J. R. Winkler and H. B.
Gray, Acc. Chem. Res., 2009, 42, 1995. (b) T. Lazarides, T.
McCormick, P. W. Du, G. G. Luo, B. Lindley and R. Eisenberg, J.
Am. Chem. Soc., 2009, 131, 9192. (c) V. Artero, C. M. Kerlidou
and M. Fontecave, Angew. Chem. Int. Ed., 2011, 50, 7238. (d)
J. C. Hu, S. Sun, M. D. Li, W. Xia, J. Wu, H. Liu and F. Wang,
Chem. Commun., 2019, 55, 14490.
8
9
(a) M. E. Weiss, L. M. Kreis, A. Lauber and E. M. Carreira,
Angew. Chem. Int. Ed., 2011, 50, 11125. (b) M. E. Weiss and E.
M. Carreira, Angew. Chem. Int. Ed., 2011, 50, 11501.
(a) L. Zhang, Y. Huang, H. Jiang, D. Jun and Y. Liao, J. Org.
Chem., 1992, 57, 774. (b) R. C. Larock and Y. D. Lu, J. Org.
Chem., 1993, 58, 2846.
Conflicts of interest
There are no conflicts to declare.
Notes and references
10 (a) Y. Obora, Y. Ogawa, Y. Imai, T. Kawamura and Y. Tsuji, J.
Am. Chem. Soc., 2001, 123, 10489. (b) J. Huang, E. Bunel and
M. M. Faul, Org. Lett., 2007, 9, 4343. (c) L. Cui, H. Chen, C. Liu
and C. Li, Org. Lett., 2016, 18, 2188.
1
C. P. Jasperse, D. P. Curran and T. L. Fevig, Chem. Rev., 1991,
91, 1237.
(a) K. Zeitler, Angew. Chem. Int. Ed., 2009, 48, 9785. (b) T. P.
2
Yoon, M. A. Ischay and J. Du, Nat. Chem., 2010, 2, 527. (c) J. 11 (a) F. Penteado, E. F. Lopes, D. Alves, G. Perin, R. G. Jacob and
Xuan and W. J. Xiao, Angew. Chem. Int. Ed., 2012, 51, 6828.
(d) C. K. Prier, D. A. Rankic and D. W. C. MacMillan, Chem. Rev.,
2013, 113, 5322. (e) N. A. Romero and D. A. Nicewicz, Chem.
Rev., 2016, 116, 10075. (f) J. P. Goddard, C. Ollivier and L.
Fensterbank, Acc. Chem. Res., 2016, 49, 1924. (g) D.
Staveness, I. Bosque and C. R. J. Stephenson, Acc. Chem. Res.,
2016, 49, 2295. (h) Q. Liu and L. Z. Wu, Natl. Sci. Rev., 2017, 4,
359. (i) B. G. Cai, J. Xuan and W. J. Xiao, Sci. Bull., 2019, 64,
337. (j) J. Xuan, X. K. He and W. J. Xiao, Chem. Soc. Rev., 2020,
49, 2546.
(a) Y. Chen, L. Q. Lu, D. G. Yu, C. J. Zhu and W. J. Xiao, Sci. China
Chem., 2018, 62, 24. (b) J. J. Zhong, Q. Y. Meng, G. X. Wang, Q.
Liu, B. Chen, K. Feng, C. H. Tung and L. Z. Wu, Chem. Eur. J.,
2013, 19, 6443. (c) J. J. Zhong, C. Yang, X. Y. Chang, C. Zou, W.
Lu and C. M. Che, Chem. Commun., 2017, 53, 8948. (d) X. K.
Qi, H. Zhang, Z. T. Pan, R. B. Liang, C. M. Zhu, J. H. Li, Q. X. Tong,
E. J. Lenardão, Chem. Rev., 2019, 119, 7113. (b) J. Xuan, Z. G.
Zhang and W. J. Xiao, Angew. Chem. Int. Ed., 2015, 54, 15632.
(c) H. Tan, H. Li, W. Ji and L. Wang, Angew. Chem. Int. Ed.,
2015, 54, 8374. (d) G. Bergonzini, C. Cassani and C. J.
Wallentin, Angew. Chem. Int. Ed., 2015, 54, 14066. (e) M.
Zhang, R. Ruzi, J. Xi, N. Li, Z. K. Wu, W. Li, S. Yu and C. Zhu, Org.
Lett., 2017, 19, 3430. (f) L. Capaldo, R. Riccardi, D. Ravelli and
M. Fagnoni, ACS Catal., 2018, 8, 304. (g) J. Genovino, Y. J. Lian,
Y. Zhang, T. O. Hope, A. Juneau, Y. Gagné, G. Ingle and M.
Frenette, Org. Lett., 2018, 20, 3229. (h) H. X. Zou, Y. Li, Y. Yang,
J. H. Li and J. Xiang, Adv. Synth. Catal., 2018, 360, 1439. (i) M.
J. Luo, T. T. Zhang, F. J. Cai, J. H. Li and D. L. He, Chem.
Commun., 2019, 55, 7251. (j) J. J. Zhao, H. H. Zhang, X. Shen
and S. Yu, Org. Lett., 2019, 21, 913. (k) J. Lu, X. K. He, X. Cheng,
A. J. Zhang, G. Y. Xu and J. Xuan, Adv. Synth. Catal., 2020, 362,
2178.
3
X. W. Gao, L. Z. Wu and J. J. Zhong, Chem. Commun., 2019, 55, 12 (a) H. Uoyama, K. Goushi, K. Shizu, H. Nomura and C. Adachi,
10848. (e) J. J. Zhong, W. P. To, Y. Liu, W. Lu and C. M. Che,
Nature, 2012, 492, 234. (b) J. Liu, Q. Liu, H. Yi, C. Qin, R. Bai,
X. Qi, Y. Lan and A. Lei, Angew. Chem. Int. Ed., 2014, 53, 502.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins